Food and Bioprocess Technology

, Volume 6, Issue 11, pp 3247–3255 | Cite as

Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment

  • E. García-Martínez
  • M. Igual
  • M. E. Martín-Esparza
  • N. Martínez-Navarrete
Original Paper

Abstract

Consumer acceptance of dried apricots depends on them having an intense orange color, a gummy texture, and a characteristic flavor. In addition, the growing demand for healthy and nutritive foods has increased the interest in this product, as apricot fruits can be considered a good source of phytochemicals, such as polyphenols, carotenoids, and vitamins. Microwave energy may be an interesting drying method, an alternative to conventional sun or hot air drying, with which to obtain dried apricots with good sensorial, nutritive, and functional properties in a shorter time. This paper aims to evaluate the effect of sulfur pretreatment and the drying process (hot air and/or microwaves) on the color, mechanical properties, and ascorbic acid, vitamins A and E, and total carotenoid content of apricot. The obtained results mean that the use of microwave energy, either in combination or not with mild–hot air, may be recommended to obtain dried apricots, without needing to apply sulfur pretreatment.

Keywords

Sulfur pretreatment Hot air drying Microwave Ascorbic acid Vitamins A and E Carotenoids Color Texture 

References

  1. Adams, J. B. (1997). Food additive–additive interactions involving sulphur dioxide and ascorbic and nitrous acids: A review. Food Chemistry, 59(3), 401–409.CrossRefGoogle Scholar
  2. Akin, E. B., Karabulut, I., & Topcu, A. (2008). Some compositional properties of main Malatya apricot Prunus armeniaca L. varieties. Food Chemistry, 107, 939–948.CrossRefGoogle Scholar
  3. AOAC (2000) Official methods of analysis (17th ed.). Gaithersburg: AOAC.Google Scholar
  4. Azodanlou, R., Darbellay, C., Luisier, J., Villettaz, J., & Amadò, R. (2003). Development of a model for quality assessment of tomatoes and apricots. LWT- Food Science and Technology, 36(2), 223–233.CrossRefGoogle Scholar
  5. Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. Lebensmittel-Wissenschaft und Technologie, 38, 471–477.Google Scholar
  6. Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering, 89(3), 281–287.CrossRefGoogle Scholar
  7. Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102(3), 966–975.CrossRefGoogle Scholar
  8. El Halouat, A., & Labuza, T. P. (1987). Air drying characteristics of apricots. Journal of Food Science, 52, 342–345.CrossRefGoogle Scholar
  9. Femenia, A., Sánchez, E. S., Simal, S., & Rosselló, C. (1998). Developmental and ripening-related effects on the cell wall of apricot (Prunus armeniaca) fruit. Journal of the Science of Food and Agriculture, 77, 487–493.CrossRefGoogle Scholar
  10. Funebo, T., & Ohlsson, T. (1998). Microwave assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38, 353–367.CrossRefGoogle Scholar
  11. Glüçü, K., Altun, M., Ozyurek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41(S1), 76–85.CrossRefGoogle Scholar
  12. Gregory, I. F. (1993). Vitamins. In O. Fennema (Ed.), Food chemistry (3rd ed., pp. 531–616). New York: Marcel Dekker.Google Scholar
  13. Halliwell, B. (1994). Free radical antioxidants in human disease. Curiosity, cause or consequence. Lancet, 344, 72–74.CrossRefGoogle Scholar
  14. Jiménez, M., Martínez-Tomé, M., Egea, I., Romojaro, F., & Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot. European Food Research and Technology, 227(1), 125–134.CrossRefGoogle Scholar
  15. Kamişli, F., & Karatas, F. (2009). Effects of sulphurisation on vitamins (A, C and E) and malondialdehyde in apricots. International Journal of Food Science and Technology, 44, 987–993.CrossRefGoogle Scholar
  16. Karabulut, I., Topcu, A., Duran, A., Turan, S., & Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armeniaca L.). Lebensmittel-Wissenschaft und Technologie, 40, 753–758.Google Scholar
  17. Karatas, F., & Kamişli, F. (2007). Variations of vitamins (A, C and E) and MDA in apricots dried in IR and microwave. Journal of Food Engineering, 78, 662–668.CrossRefGoogle Scholar
  18. Kevers, C., Falkowski, M., Tabart, J., Defraigne, J. O., Dommes, J., & Pincemail, J. (2007). Evolution of antioxidant capacity during storage of selected fruits and vegetables. Journal of Agricultural and Food Chemistry, 55, 8596–8603.CrossRefGoogle Scholar
  19. Krinsky, N. I. (1989). Carotenoids and cancer in animal models. Journal of Nutrition, 119, 123–126.Google Scholar
  20. Kritchevsky, D. (1992). Antioxidant vitamins in the prevention of cardiovascular disease. Nutrition Today, 27, 30–33.CrossRefGoogle Scholar
  21. Leccese, A., Bartolini, S., & Viti, R. (2008). Total antioxidant capacity and phenolics content in fresh apricots. Acta Alimentaria, 37(1), 65–76.CrossRefGoogle Scholar
  22. Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577–1587.CrossRefGoogle Scholar
  23. Lo Voi, A., Impembo, M., Fasanaro, G., & Castaldo, D. (1994). Chemical characterization of apricot puree. Journal of Food Composition and Analysis, 8, 78–85.CrossRefGoogle Scholar
  24. Madrau, M. A., Piscopo, A., Sanguinetti, A. M., Del Caro, A., Poiana, M., Romeo, F. V., et al. (2009). Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. European Food Research and Technology, 228, 441–448.CrossRefGoogle Scholar
  25. Mahmutoğlu, T., Saygi, Y. B., Borcakli, M., & Özay, G. (1996). Effects of pretreatment–drying method combinations on the drying rates, quality and storage stability of apricots. Lebensmittel-Wissenschaft und Technologie, 29, 118–121.Google Scholar
  26. Meléndez-Martínez A.J., Vicario I.M., Heredia F.J. (2004) Estabilidad de los pigmentos carotenoides en los alimentos. Archivos Latinoamericanos de Nutrición (ALAN), publicación oficial de la Sociedad Latinoamericana de Nutrición (SLAN), 54(2), 149–154.Google Scholar
  27. Mezzetti, A., Lapenna, D., Pierdomenico, S. D., Calafiore, A. M., Constantini, F., Riario-Sforza, G., et al. (1995). Vitamin E, C and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers. Atherosclerosis, 112, 91–99.CrossRefGoogle Scholar
  28. Mir, M. A., Hussain, P. R., Fouzia, S., & Rather, A. H. (2009). Effect of sulphiting and drying methods on physicochemical and sensorial quality of dried apricots during ambient storage. International Journal of Food Science and Technology, 44, 1157–1166.CrossRefGoogle Scholar
  29. Munzuroğlu, O., Karatas, F., & Geckil, H. (2003). The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry, 83, 205–212.CrossRefGoogle Scholar
  30. Olives, A. I., Cámara, M., Sánchez, M. C., Fernández, V., & López, M. (2006). Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95, 328–336.CrossRefGoogle Scholar
  31. Ozkan, M., & Cemeroglu, B. (2002). Desulfiting dried apricots by hydrogen peroxide. Journal of Food Science, 67, 1631–1635.CrossRefGoogle Scholar
  32. Piga, A., Poiana, M., Pinna, I., Agabbio, M., & Minciane, A. (2004). Drying performance of five Italian apricot cultivars. Sciencies des Aliments, 24, 247–259.CrossRefGoogle Scholar
  33. Roos, Y. H., Roininen, K., Jouppila, K., & Tuorila, H. (1998). Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1, 163–180.CrossRefGoogle Scholar
  34. Ruiz, D., Egea, J., Gil, M. I., & Tomás-Barberán, F. A. (2005). Carotenoids from new apricot Prunus armeniaca L. varieties and their relationship with flesh and skin colour. Journal of Agricultural and Food Chemistry, 53, 6368–6374.CrossRefGoogle Scholar
  35. Ryley, J., & Kajda, P. (1994). Vitamins in thermal processing. Food Chemistry, 49(2), 119–129.CrossRefGoogle Scholar
  36. Sharma, G., & Prasad, S. (2001). Drying of garlic (Allium sativum) cloves by microwave–hot air combination. Journal of Food Engineering, 50, 99–105.CrossRefGoogle Scholar
  37. Stryer, L. (1995). Biochemistry (4th ed., pp. 452–455). New York: W.H. Freeman and Company.Google Scholar
  38. Torreggiani D., Forni D., Maestrelli A., Quadri F. (1998). Influence of osmotic dehydration on texture and pectic composition of kiwifruit slices. In: Proceedings of the 11th International Drying Symposium (IDS098), vol. A, pp. 930–937, 19–22 August 1998, Halkidiki, Greece.Google Scholar
  39. Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—A review. Biosystems Engineering, 98, 1–16.CrossRefGoogle Scholar
  40. Velu, V., Nagender, A., Prabhakara Rao, P. G., & Rao, D. G. (2006). Dry milling characteristics of microwave dried maize grains. Journal of Food Engineering, 74(1), 30–36.CrossRefGoogle Scholar
  41. Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551.CrossRefGoogle Scholar
  42. Ziegler, R. G. (1989). A review of epidemiologic evidence that carotenoids reduce the risk of cancer. Journal of Nutrition, 119, 116–122.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • E. García-Martínez
    • 1
  • M. Igual
    • 1
  • M. E. Martín-Esparza
    • 2
  • N. Martínez-Navarrete
    • 1
    • 3
  1. 1.Food Investigation and Innovation Group, Food Technology DepartmentUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Institute of Food Engineering for Development, Food Technology DepartmentUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Food Investigation and Innovation Group, Food Technology DepartmentUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations