Advertisement

Food and Bioprocess Technology

, Volume 6, Issue 10, pp 2587–2599 | Cite as

Supercritical Carbon Dioxide Extraction of Eugenol from Clove Buds

Process Optimization and Packed Bed Characterization
  • Dipan Chatterjee
  • Paramita BhattacharjeeEmail author
Original Paper

Abstract

Isolation of eugenol from dried clove buds (Syzygium aromaticum Linn) of Indian origin was carried out using supercritical carbon dioxide (SC-CO2) extraction. Optimization of its process parameters such as temperature, pressure and time of extraction has been conducted using response surface methodology. The optimized conditions that provided the optimum yield of eugenol were a sample size of 20 g of clove powder of particle diameter 0.5 mm at a temperature of 60°C and pressure of 250 bar for 90 min extracting time at a flow rate of 2 l min−1 of CO2. Statistical analyses conducted on the extraction parameters concluded that extraction temperature have significant effect on the yield of eugenol, whereas extraction pressure and time do not. The results obtained are in accordance to the basic principle of supercritical fluid phase equilibrium behavior. Solubility of eugenol in SC-CO2 under different temperature and pressure regimes have been determined experimentally and values were used to construct a correlated Chrastil equation in linear form to allow the prediction of solubility of eugenol in SC-CO2 under different extraction conditions. Using dimensionless numbers, an empirical correlation was also deduced for characterization of the extraction process of eugenol in SC-CO2 considering overall fixed bed behavior for clove matrix and mass transfer coefficients in supercritical phases.

Keywords

Eugenol Supercritical carbon dioxide extraction Clove buds Chrastil equation Dimensionless numbers 

Notes

Acknowledgment

The authors acknowledge the University Grants Commission, India for their financial support of this study.

References

  1. Bartle, K. D., Clifford, A. A., Hawthorne, S. B., Langenfeld, J. J., Miller, D. J., & Robinson, R. (1990). A model for dynamic extraction using a supercritical fluid. The Journal of Supercritical Fluids, 3, 143–149.CrossRefGoogle Scholar
  2. Bhattacharjee, P., Chatterjee, D., & Singhal, R. S. (2012). Supercritical carbon dioxide extraction of squalene from Amaranthus paniculatus: experiments and process characterization. Food Bioprocess Technology, 5, 2506–2521.CrossRefGoogle Scholar
  3. Bhattacharjee, P., Singhal, R. S., & Tiwari, S. R. (2007). Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79, 892–898.CrossRefGoogle Scholar
  4. Catchpole, O. J., & Von Kamp, J. C. (1997). Phase equilibrium for the extraction of squalene from shark liver oil using supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 36, 3762–3768.CrossRefGoogle Scholar
  5. Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nakbi, A. B., Rouabbhia, M., Mahdouani, K., & Bakhrouf, A. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research, 21, 501–506.CrossRefGoogle Scholar
  6. Chatterjee, D., Bhattacharjee, P., Banerjee, A. (2012). Phytochemical analyses and food applications on clove bud extracts obtained by liquid and supercritical carbon dioxide extraction technologies. Proceedings of 2012 International Conference on Engineering and Applied Science, ISSN 2227–0299, ISBN 978-986-87417-1-3, 392–409.Google Scholar
  7. Della Porta, G., Taddeo, R., D’Urso, E., & Reverchon, E. (1998). Isolation of clove bud and star anise essential oil by supercritical CO2 extraction. LWT - Food Science and Technology, 31, 454–460.CrossRefGoogle Scholar
  8. Ge, Y., Ni, Y., Yan, H., Chen, Y., & Cai, T. (2002). Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. Journal of Food Science, 67, 239–243.CrossRefGoogle Scholar
  9. Gopalakrishnan, N., Shanti, P. P. V., & Narayanan, C. S. (1990). Composition of clove (Syzygium aromaticum) bud oil extracted using carbon dioxide. Journal of the Science of Food and Agriculture, 50, 111–117.CrossRefGoogle Scholar
  10. Hazra, A., Alexander, K., Dollimore, D., & Riga, A. (2004). Characterization of some essential oils and their key components: thermoanalytical techniques. Journal of Thermal Analysis and Calorimetry, 75, 317–330.CrossRefGoogle Scholar
  11. Hildebrand, J. H., & Scott, R. L. (1950). The solubility of nonelectrolytes (3rd ed.). New York: Dover.Google Scholar
  12. Hong-Peng, Y., Ke-Gang, W., Tong-Rui, W., Shao-Shu, Z., Xiang-Hua, C., & Ze-Hong, L. (2009). Studies on supercritical CO2 extraction–molecular distillation of essential oil from clove (Eugenia caryophyllata Thunb.) Bud. Chemistry and Industry of Forest Products, 29, 74–78.Google Scholar
  13. Ismadji, S., & Bhatia, S. K. (2003). Solubility of selected esters in supercritical carbon dioxide. The Journal of Supercritical Fluids, 27, 1–11.CrossRefGoogle Scholar
  14. Jafari Nejad, S., Abolghasemi, H., Moosavian, M. A., & Maragheh, M. G. (2010). Prediction of solute solubility in supercritical carbon dioxide: a novel semi-empirical model. Chemical Engineering Research and Design, 88, 893–898.CrossRefGoogle Scholar
  15. King, J. W. (1995). Determination of the solubility parameter of soybean oil by inverse gas chromatography. LWT - Food Science and Technology, 28, 190–195.CrossRefGoogle Scholar
  16. Kuk, M. S., & Dowd, M. K. (1998). Supercritical CO2 extraction of rice bran. Journal of the American Oil Chemists' Society, 75, 623–628.CrossRefGoogle Scholar
  17. Kwon, K. T., Uddin, M. S., Jung, G. W., Sim, J. E., & Chun, B. S. (2010). Supercritical carbon dioxide extraction of phenolics and tocopherols enriched oil from wheat bran. International Journal of Biological and Life Sciences, 6, 117–122.Google Scholar
  18. Lim, G. B., Holder, G. D., & Shah, Y. T. (1989). Solid–fluid mass transfer in a packed bed under supercritical conditions. In: Supercritical fluid science and technology, pp. 379–395. Washington, DC: American Chemical Society.Google Scholar
  19. Martin, A., & Cocero, M. J. (2007). Mathematical modeling of the fractionation of liquids with supercritical CO2 in a countercurrent packed column. The Journal of Supercritical Fluids, 39, 304–314.CrossRefGoogle Scholar
  20. Montgomery, D. C. (2001a). Experiments with a single factor: the analysis of variance. In: Design and analysis of experiments, pp. 60–125. John Wiley & Sons Inc, New York.Google Scholar
  21. Montgomery, D. C. (2001b). Response surface methods and other approaches to process optimization. In: Design and analysis of experiments, pp. 427–510. John Wiley & Sons Inc, New York.Google Scholar
  22. Mukhopadhyay, M. (2000). Fundamentals of supercritical fluids and phase equilibria. In: Natural extracts using supercritical carbon dioxide, pp. 13–39. Boca Raton, FL: CRC Press.Google Scholar
  23. Norhuda, I., & Mohd Omar, A. K. (2009). Mass transfer modeling in a packed bed of palm kernels under supercritical conditions. International Journal of Chemical and Biological Engineering, 2, 10–13.Google Scholar
  24. Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 15, 59–64.CrossRefGoogle Scholar
  25. Perry, R. H., Green, D. W., & Maloney, J. O. (1997). Perry’s chemical engineer’s handbook (7th ed., pp. 15–22). New York: McGraw-Hill.Google Scholar
  26. Reverchon, E. (1997). Supercritical fluid extraction and fractionation of essential oils and related products. Journal of Supercritical Fluids, 10, 1–37.CrossRefGoogle Scholar
  27. Reverchon, E., Daghero, J., Marrone, C., Mattea, M., & Poletto, M. (1999). Supercritical fractional extraction of fennel seed oil and essential oil: experiments and mathematical modeling. Industrial & Engineering Chemistry Research, 38, 3069–3075.CrossRefGoogle Scholar
  28. Reverchon, E., & Marrone, C. (1997). Supercritical extraction of clove bud essential oil: isolation and mathematical modeling. Chemical Engineering Science, 20, 3421–3428.CrossRefGoogle Scholar
  29. Shi, J., Zhou, X., & Kassama, L. S. (2007). Correlation of mass transfer coefficients in supercritical CO2 separation process. Drying Technology, 25, 335–339.CrossRefGoogle Scholar
  30. Silva, G. F., Gamarra, F. M. C., Oliveira, A. L., & Cabral, F. A. (2008). Extraction of bixin from annatto seeds. Brazilian Journal of Chemical Engineering, 25, 419–426.Google Scholar
  31. Souza, A. T., Corazza, M. L., Cardozo-Filho, L., Guirardello, R., & de Meireles, M. A. A. (2004). Phase equilibrium measurements for the systems clove (Eugenia carophyllus) oil + CO2. Journal of Chemical and Engineering Data, USA, 49, 352–356.CrossRefGoogle Scholar
  32. Stuber, F., Ma, A., Ma, V., Larrayoz, A., & Recasens, F. (1996). Supercritical fluid extraction of packed beds: external mass transfer in upflow and downflow operation. Industrial and Engineering Chemistry Research, 35, 3618–3628.CrossRefGoogle Scholar
  33. Tan, C. S., Liang, S. K., & Liou, D. C. (1988). Fluid–solid mass transfer in a supercritical fluid extractor. The Chemical Engineering Journal, 38, 17–22.CrossRefGoogle Scholar
  34. Tho, F. C., Natova, L., & Ruschev, D. (1991). Thermal analysis of eugenol, isoeugenol and their benzoic acid esters. Journal of Thermal Analysis and Calorimetry, 37, 2723–2727.CrossRefGoogle Scholar
  35. Wenqiang, G., Shufen, L., Ruixiang, Y., Shaokun, T., & Can, Q. (2007). Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chemistry, 101, 1558–1564.CrossRefGoogle Scholar
  36. Westerman, D., Santos, R. C. D., Bosley, J. A., Rogers, J. S., & Al-Duri, B. (2006). Extraction of Amaranth seed oil by supercritical carbon dioxide. The Journal of Supercritical Fluids, 37, 38–52.CrossRefGoogle Scholar
  37. Yazdani, F., Mafi, M., Farhadi, F., Tabar-Heidar, K., Aghapoor, K., Mohsenzadeh, F., & Darabi, H. R. (2005). Supercritical CO2 extraction of essential oil from clove bud: effect of operation conditions on the selective Isolation of eugenol and eugenyl acetate. Zeitschrift für Naturforschung. B, A journal of chemical sciences, 60, 1197–1201.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Food Technology and Biochemical EngineeringJadavpur UniversityCalcuttaIndia

Personalised recommendations