Food and Bioprocess Technology

, Volume 6, Issue 12, pp 3441–3455 | Cite as

Utilisation Potential of Feijoa Fruit Wastes as Ingredients for Functional Foods

  • Dongxiao Sun-Waterhouse
  • Wei Wang
  • Geoffrey I. N. Waterhouse
  • Sandhya S. Wadhwa
Original Paper


Feijoa fruits have high antioxidant activity as they contain significant concentrations of polyphenols (PPs), carotenoids and vitamins. This study evaluates the colour, pH, total soluble solids (TSS), pectin fibre content, total extractable PP content (TEPC) and total antioxidant activity of the extracts generated from the fruit wastes (primarily skin and some flesh) remaining after feijoa flesh consumption. Extractions were conducted at room temperature and 50 °C using accelerated solvent extraction technology and different extraction media [water, acidified water (containing citric acid, pH 3.5), and 30, 50 and 80 % (v/v) aqueous ethanol solutions]. Results show that the composition and properties of the extracts depend on the extraction media and, to a lesser extent, on the extraction temperature. The 80 % ethanolic extract was bright green in colour. The water and acidified water extracts showed more browning than the ethanolic extracts, suggesting possible detrimental sensory impacts for food applications. The TSS decreased in the order of 80, 50 and 30 % ethanolic and water extracts. The 50 % ethanolic extract had the highest TEPC and antioxidant activity at both extraction temperatures, which was supported by high performance liquid chromatography analyses. The extracts produced with solutions containing less ethanol, especially water extracts, had higher pectin contents. The UA content of the extract produced using water alone was the highest (5.56 % as GalA) at 20 °C, whilst that produced using 30 % ethanol solution was the highest (3.90 % as GalA) at 50 °C. Higher extraction temperature (50 °C) resulted in lower pectin contents. These results demonstrate the potential of feijoa waste extracts, especially 50 and 80 % ethanolic extracts, as ingredients for functional food applications.


Acidified water extract Feijoa wastes Fibre polysaccharides Aqueous ethanolic extract Polyphenols Water extract 


  1. Abdul Hamid, A., Shah, Z. M., Muse, R., & Mohamed, S. (2002). Characterisation of antioxidative activities of various extracts of Centella asiatica (L) Urban. Food Chemistry, 77(4), 465–569.CrossRefGoogle Scholar
  2. Adil, İ. H., Çetin, H. İ., Yener, M. E., & Bayındırlı, A. (2007). Subcritical (carbon dioxide + ethanol) extraction of polyphenol from apple and peach pomaces, and determination of the antioxidant activities of the extracts. Journal of Supercritical Fluids, 43(1), 55–63.CrossRefGoogle Scholar
  3. Akowuah, G. A., Mariam, A., & Chin, J. H. (2009). The effect of extraction temperature on total phenols and antioxidant activity of Gynura procumbens leaf. Pharmacognosy Magazine, 5(17), 81–85.Google Scholar
  4. Alonso-Salces, R. M. K. E., Barranco, A., Berrueta, L. A., Gallo, B., & Vicente, F. (2001). Determination of polyphenolic profiles of basque cider apple varieties using accelerated solvent extraction. Journal of Agricultural and Food Chemistry, 49, 3761–3766.CrossRefGoogle Scholar
  5. Alonso-Salces, R. M., Barranco, A., Corta, E., Berrueta, L. A., Gallo, B., & Vicente, F. (2005). A validated solid–liquid extraction method for the HPLC determination of polyphenols in apple tissues—comparison with pressurised liquid extraction. Talanta, 65, 654–662.CrossRefGoogle Scholar
  6. Aprikian, O., Duclos, V., Guyot, S., Besson, C., Manach, C., Bernalier, A., et al. (2003). Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. Journal of Nutrition, 133(6), 1860–1865.Google Scholar
  7. Argüelles, M. C., & Watson, R. R. (2010). Feijoa (pineapple guava) fruit: A role in health promotion? In R. R. Watson & V. R. Preedy (Eds.), Bioactive foods and extracts: Cancer treatment and prevention (pp. 603–608). Boca Raton: CRC.CrossRefGoogle Scholar
  8. Arts, I. C. W., & Hollman, P. C. H. (2005). Polyphenols and disease risk in epidemiologic studies. American Journal of Clinical Nutrition, 81(1), 317S–325S.Google Scholar
  9. Askar, A. (1998). Importance and characteristics of tropical fruits. Fruit in Processing, 8, 273–276.Google Scholar
  10. Baba-Zade, F. I. (1972). Accumulation of vitamin C in fruits of the feijoa. In E. P. Franchuk (Ed.), Trudy Vsesoyuznogo Seminara po Biologicheski Aktivnym (Lechebnym) Veshchestvam Plodov i Yagod (4th ed., pp. 183–186). Michurinsk: Vsesoyuznyi Nauchno-Issledovatel’skii Institut Sadovodstva.Google Scholar
  11. Bakowska, A. M., Kucharska, A. Z., & Oszmianski, J. (2003). The effects of heating, UV irradiation and storage on stability of anthocyanin-polyphenol copigment complex. Food Chemistry, 81, 349–355.CrossRefGoogle Scholar
  12. Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.CrossRefGoogle Scholar
  13. Basile, A., Vuotto, M. L., Ricciardi, L., Pezone, L., Mancino, D., Senatore, F., et al. (2001). Antimicrobial and antioxidant activities in Feijoa sellowiana skin and pulp. In: Bioluminescence and chemiluminescence, proceedings of the international symposium, 11th, 6–10 September 2000, pp. 223–226, Pacific Grove.Google Scholar
  14. Basile, A., Conte, B., Rigano, D., Senatore, F., & Sorbo, S. (2010). Antibacterial and antifungal properties of acetonic extract of Feijoa sellowiana fruits and its effect on Helicobacter pylori growth. Journal of Medicinal Food, 13(1), 189–195.CrossRefGoogle Scholar
  15. Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Meessen, L. L., Sigoillot, J. C., et al. (2006). Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydrate Research, 341(11), 1820–1827.CrossRefGoogle Scholar
  16. Benzie, I. F. F., Strain, J. J., & Lester, P. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27.CrossRefGoogle Scholar
  17. Beyhan, Ö., Elmastas, M., & Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). Journal of Medicinal Plants Research, 4(11), 1065–1072.Google Scholar
  18. Bezerra, R. M. F., & Dias, A. A. (2005). Enzymatic kinetic of cellulose hydrolysis inhibition by ethanol and cellobiose. Applied Biochemistry and Biotechnology, 126(1), 49–59.CrossRefGoogle Scholar
  19. Bimakr, M. (2010). Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food and Bioproducts Processing, 1–6.Google Scholar
  20. Binder, R. G., & Flath, R. A. (1989). Volatile components of pineapple guava. Journal of Agricultural and Food Chemistry, 37, 734–736.CrossRefGoogle Scholar
  21. Bontempo, P., Mita, L., Miceli, M., Doto, A., Nebbioso, A., De Bellis, F., et al. (2007). Feijoa sellowiana derived natural flavone exerts anti-cancer action displaying HDAC inhibitory activities. International Journal of Biochemistry & Cell Biology, 39(10), 1904–1914.CrossRefGoogle Scholar
  22. Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333.CrossRefGoogle Scholar
  23. Bravo, L., Abia, R., & Saura-Calixto, F. (1994). Polyphenols as dietary fibre associated compounds. Comparative study on in vivo and in vitro properties. Journal of Agricultural and Food Chemistry, 42, 1481–1487.CrossRefGoogle Scholar
  24. Canhoto, J. M., & Cruz, G. S. (1996). Feijoa sellowiana Berg (pineapple guava). In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry. Trees IV (Vol. 35, pp. 155–171). Berlin: Springer.Google Scholar
  25. Carle, R., Keller, P., Schieber, A., Rentschler, C., Katzschner, T., Rauch, D., et al. (2001). Method for obtaining useful materials from the by-products of fruit and vegetable processing. Patent application, WO 01/78859 A1.Google Scholar
  26. Cassady, J. M., Wang, X., Liu, Y. L., Ho, D. K., Baird, W. M., Chae, Y. H., et al. (1993). Recent advances in the discovery of potential cancer chemopreventive agents. In Q. Dai, M.-A. Armour, & Q. Zheng (Eds.), Recent advances of chemistry and molecular biology in cancer research, international symposium, Beijing, July 23–26, 1991 (pp. 15–20). Beijing: Science Press.Google Scholar
  27. Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., & Lianto, F. S. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166–172.CrossRefGoogle Scholar
  28. Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., & Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz and Pavón) tubers. Separation and Purification Technology, 55(2), 217–225.CrossRefGoogle Scholar
  29. Eskilsson, C. S., & Björklund, E. (2000). Analytical-scale microwave-assistedextraction. Journal of Chromatography A, 902, 227–250.CrossRefGoogle Scholar
  30. Faravash, R. S., & Ashtiani, F. Z. (2007). The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. International Journal of Food Science and Technology, 42, 1177–1187.CrossRefGoogle Scholar
  31. Fernandez, M. L. (2001). Pectin: composition, chemistry, physicochemical properties, food applications, and physiological effects. In S. S. Cho & M. L. Dreher (Eds.), Handbook of dietary fibre (pp. 583–602). New York: Marcel Dekker.Google Scholar
  32. Filisetti-Cozzi, T. M. C. C., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197, 157–162.CrossRefGoogle Scholar
  33. Foo, L. Y., & Porter, L. J. (1981). The structure of tannins of some edible fruits. Journal of the Science of Food and Agriculture, 32(7), 711–716.CrossRefGoogle Scholar
  34. Fry, S. C. (1988). The growing plant cell wall: Chemical and metabolic analysis (pp. 1–333). New York: Longman and Scientific Technical.Google Scholar
  35. Gao, J., Wang, B., Feng, X., Tang, H., Li, W., & Zhang, K. (2011). Partial properties of polyphenol oxidase in sour cherry (Prunus cerasus L. CV. CAB) Pulp. World Journal of Agricultural Sciences, 7(4).Google Scholar
  36. Giergielewicz-Mozajska, H., Dabrowski, L., & Namiesnik, J. (2001). Accelerated solvent extraction (ASE) in the analysis of environmental solid samples—some aspects of theory and practice. Critical Reviews in Analytical Chemistry, 31(3), 149–165.CrossRefGoogle Scholar
  37. Harman, J. E. (1987). Feijoa fruit: Growth and chemical composition during development. New Zealand of Experimental Agriculture, 15, 209–215.CrossRefGoogle Scholar
  38. Hewett, E. W. (1993). New horticultural crops in New Zealand. In J. Janick & J. E. Simon (Eds.), New crops. New York: Wiley.Google Scholar
  39. Hoffelner, S. (2010). Functional constituents—what is allowed under the Health Claim Regulations? Fluessiges Obst, 77(2), 70–72.Google Scholar
  40. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856.CrossRefGoogle Scholar
  41. Ielpo, M. T., Basile, A., Miranda, R., Moscatiello, V., Nappo, C., Sorbo, S., et al. (2000). Immunopharmacological properties of flavonoids. Fitoterapia, 71(Suppl. 1), S101–S109.CrossRefGoogle Scholar
  42. Isobe, Y., Kase, Y., Narita, M., & Komiya, T. (2003). Antioxidative activity of tropical fruit, Feijoa sellowiana Berg. Nippon Kasei Gakkaishi, 54(11), 945–949.Google Scholar
  43. Jung, K. A., Song, T. C., Han, D., Kim, I. H., Kim, Y. E., & Lee, C. H. (2005). Cardiovascular protective properties of kiwifruit extracts in vitro. Biological and Pharmaceutical Bulletin, 28, 1782–1785.CrossRefGoogle Scholar
  44. Kang, W.-Y., Li, C.-F., & Liu, Y.-X. (2010). Antioxidant phenolic compounds and flavonoids of Mitragyna rotundifolia (Roxb.) Kuntze in vitro. Medicinal Chemistry Research, 19(9), 1222–1232.CrossRefGoogle Scholar
  45. Koh, G. Y., Chou, G., & Liu, Z. (2009). Purification of a water extract of Chinese sweet tea plant (Rubus suavissimus S. Lee) by alcohol precipitation. Journal of Agricultural and Food Chemistry, 57(11), 5000–5006.CrossRefGoogle Scholar
  46. Kriventsov, V. I., & Karakhanova, S. V. (1972). Biologically active substances of several subtropical fruit crops of the Crimea. In E. P. Franchuk (Ed.), Trudy Vsesoyuznogo Seminara po Biologicheski Aktivnym (Lechebnym) Veshchestvam Plodov i Yagod (4th ed., pp. 82–86). Michurinsk: Vsesoyuznyi Nauchno-Issledovatel’skii Institut Sadovodstva.Google Scholar
  47. Labuckas, D. O., Maestri, D. M., Perelló, M., Martínez, M. L., & Lamarque, A. L. (2008). Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chemistry, 107(2), 607–612.CrossRefGoogle Scholar
  48. Laleh, G. H., Frydoonfar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH and species on stability of anthocyanins pigments in four Berberi species. Journal of Nutrition, 5, 90–92.Google Scholar
  49. Lamikanra, O. (2002). Enzymatic effects on flavor and texture of fresh-cut fruits and vegetables. In: Fresh cut fruits and vegetables: Science, technology and market (pp. 127–147). Boca Raton: CRC.Google Scholar
  50. Lapcík, O., Klejdus, B., Kokoska, L., Davidova, M., Afandi, K., Kuban, V., et al. (2005). Identification of isoflavones in Acca sellowiana and two Psidium species (Myrtaceae). Biochemical Systematics and Ecology, 33(10), 983–992.CrossRefGoogle Scholar
  51. Larrauri, J., Ruperez, P., & Saura-Calizto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peel. Journal of Agricultural and Food Chemistry, 45, 1390–1393.CrossRefGoogle Scholar
  52. Lauren, D. R., Smith, W. A., Adaim, A., Cooney, J. M., Wibisono, R., Jensen, D. J., et al. (2009). Chemical composition and in vitro anti-inflammatory activity of apple phenolic extracts and of their sub-fractions. International Journal of Food Sciences and Nutrition, 60(S7), 188–205.CrossRefGoogle Scholar
  53. Liu, M. (2007). Ethanol precipitation of Chinese drugs and its equipment. Zhongchengyao, 29, 1202–1204.Google Scholar
  54. Liyana-Pathirana, C., & Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93(1), 47–56.CrossRefGoogle Scholar
  55. Luthria, D. L. (2006). Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J Journal of Science of Food and Agriculture, 86, 2266–2272.CrossRefGoogle Scholar
  56. Macheix, J. J., Fleuriet, A., & Billot, J. (1990). Fruit phenolics (pp. 82–92). Boca Raton: CRC.Google Scholar
  57. Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1, 7–18.Google Scholar
  58. Mazurkiewicz, J., Baranowska, H., Wojtasik, M., & Tomasik, P. (2007). Macrostructure of aqueous solutions of ethanol and its implications. Electronic Journal of Polish Agricultural Universities, 10(2), #17. Access 9 August 2012).
  59. McGhie, T., Hunt, M., & Barnett, L. (2004). Determination of phytochemical and antioxidant compounds in Feijoa. Report to the New Zealand Feijoa Growers Association, HortResearch New Zealand.Google Scholar
  60. Motohashi, N., Kawase, M., Shirataki, Y., Tani, S., Saito, S., Sakagami, H., et al. (2000). Biological activity of feijoa peel extracts. Anticancer Research, 20, 4323–4329.Google Scholar
  61. Nakashima, H. (2001). Biological activity of feijoa peel extracts. Kagoshima University Research Center for the Pacific Islands, Occasional Papers, Vol. 34, pp. 169–175Google Scholar
  62. Nose, A. (2004). Solute effects on the interaction between water and ethanol in aged whiskey. Journal of Agricultural and Food Chemistry, 52, 5359–5365.CrossRefGoogle Scholar
  63. Papadopoulou, A., & Frazier, R. A. (2004). Characterization of protein–polyphenol interactions. Trends in Food Science & Technology, 15, 186–190.CrossRefGoogle Scholar
  64. Patterson, K. J. (1990). Effects of pollination on fruit set, size, and quality in feijoa (Acca sellowiana (Berg) Burret). New Zealand Journal of Crops and Horticultural Science, 18, 127–131.CrossRefGoogle Scholar
  65. Perez-Jimenez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39, 791–800.CrossRefGoogle Scholar
  66. Pesis, E., Zauberman, G., & Avissar, I. (1991). Induction of certain aroma volatiles in feijoa fruit by postharvest application acetaldehyde or anaerobic conditions. Journal of the science of Food and Agriculture, 54(3), 329–337.CrossRefGoogle Scholar
  67. Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111–2117.CrossRefGoogle Scholar
  68. Pinelo, M., Arnous, A., & Meyer, A. S. (2006). Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology, 17(11), 579–590.CrossRefGoogle Scholar
  69. Pinelo, M., Zornoza, B., & Meyer, A. S. (2008). Selective release of phenols from apple skin: mass transfer kinetics during solvent and enzyme-assisted extraction. Separation and Purification Technology, 63(3), 620–627.CrossRefGoogle Scholar
  70. Plant and Food Research Institute of New Zealand Ltd. (2011). Fresh Facts New Zealand Horticulture 2011. Corporate publication. Accessed 16 Sept 2011.
  71. Reis, E., Batista, M. T., & Canhoto, J. M. (2008). Effect and analysis of phenolic compounds during somatic embryogenesis induction in Feijoa sellowiana Berg. Protoplasma, 232, 193–202.CrossRefGoogle Scholar
  72. Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple and red flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100, 885–894.CrossRefGoogle Scholar
  73. Rice-Evans, C. A., & Miller, N. J. (1995). Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions, 24, 790–795.Google Scholar
  74. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine, 20, 933–956.CrossRefGoogle Scholar
  75. Romero-Perez, A. I., Lamuela-Raventos, R. M., Andres-Lacueva, C., & de la Torre-Boronat, M. C. (2001). Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Journal of Agricultural and Food Chemistry, 49, 210–215.CrossRefGoogle Scholar
  76. Romero-Rodriguez, Vazquez-Oderiz, M. L., Lopez-Hernandez, J., & Simal-Lozano, J. (1994). Composition of babaco, feijoa, passion-fruit and tamarillo produced in Galica (NW Spain). Food Chemistry, 49, 251–255.CrossRefGoogle Scholar
  77. Rossi, A., Rigano, D., Pergola, C., Formisano, C., Basile, A., Bramanti, P., et al. (2007). Inhibition of inducible nitric oxide synthase expression by an acetonic extract from Feijoa sellowiana Berg. fruits. Journal of Agricultural and Food Chemistry, 55(13), 5053–5061.CrossRefGoogle Scholar
  78. Ruenroengklin, N., Zhong, J., Duan, X., Yang, B., Li, J., & Jiang, Y. (2008). Effects of various temperatures and pH values on the extraction yield of phenolics from Litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. International Journal of Molecular Sciences, 9, 1333–1341.CrossRefGoogle Scholar
  79. Saj, O. P., Roy, R. K., & Savitha, S. V. (2008). Chemical composition and antimicrobial properties of essential oil of Feijoa sellowiana O. Berg. (pineapple guava). Journal of Pure and Applied Microbiology, 2(1), 227–230.Google Scholar
  80. Salvo, F., Toscano, M. A., & Dugo, G. (1987). Chemical composition of Feijoa sellowiana fruit. Rivista della Societa Italiana di Scienza dell’Alimentazione. Rivista della Società Italiana di Scienze dell’Alimentazione, 16(6), 471–474.Google Scholar
  81. Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science and Technology, 12, 401–413.CrossRefGoogle Scholar
  82. Scott, K. P., Duncan, S. H., & Flint, H. J. (2008). Dietary fibre and the gut microbiota. Nutrition Bulletin, 33, 201–211.CrossRefGoogle Scholar
  83. Shahidi, F., & Naczk, M. (2004). Phenolics in food and nutraceuticals. New York: CRC.Google Scholar
  84. Shaw, G. J., Ellingham, P. J., & Birch, E. J. (1983). Volatile constituents of feijoa—headspace analysis of intact fruit. Journal of the Science of Food and Agriculture, 34(7), 743–747.CrossRefGoogle Scholar
  85. Shaw, G. J., Allen, J. M., & Yates, M. K. (1989). Volatile flavour constituents in the skin oil from Feijoa sellowiana. Phytochemistry, 28, 1529–1530.CrossRefGoogle Scholar
  86. Shaw, G. J., Allen, J. M., Yates, M. K., & Franich, R. A. (1990). Volatile flavor constituents of feijoa (Feijoa sellowiana)—analysis of fruit flesh. Journal of the Science of Food and Agriculture, 50(3), 357–361.CrossRefGoogle Scholar
  87. Silva, E. M., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Ingaedulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381–387.CrossRefGoogle Scholar
  88. Singleton, V., Orthofer, R., & Lamuela-Raventos, R. (1997). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299A, 152–178.Google Scholar
  89. Slavin, J., & Green, H. (2007). Dietary fibre and satiety. Nutrition Bulletin, 32, S32–S42.CrossRefGoogle Scholar
  90. Spigno, G., Tramelli, L., & Faveri, D. M. D. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200–208.CrossRefGoogle Scholar
  91. Starling, S. (2004). American cranberry first fruit in world to win health claim. Functional Foods & Nutraceuticals, September, 6–6.Google Scholar
  92. Stevenson, D., Wibisono, R., Jensen, D., Stanley, R., & Cooney, J. (2006). Direct acylation of flavonoid glycosides with phenolic acids catalysed by candida antarctica lipase B (Novozym 435®). Enzyme and Microbial Technology, 39, 1236–1241.CrossRefGoogle Scholar
  93. Sudhakar, D. V., & Maini, S. B. (2000). Isolation and characterization of mango peel pectins. Journal of Food Processing and Preservation, 24, 209–227.CrossRefGoogle Scholar
  94. Sun-Waterhouse, D., Melton, L. D., O’Connor, C. J., Kilmartin, P. A., & Smith, B. G. (2008). Effect of apple cell walls and their extracts on the activity of dietary antioxidants. Journal of Agricultural and Food Chemistry, 56, 289–295.CrossRefGoogle Scholar
  95. Sun-Waterhouse, D., Wen, I., Wibisono, R., Melton, L. D., & Wadhwa, S. (2009). Evaluation of the extraction efficiency for polyphenol extracts from by-products of green kiwifruit juicing. International Journal of Food Science and Technology, 44, 2644–2652.CrossRefGoogle Scholar
  96. Sun-Waterhouse, D., Teoh, A., Massarotto, C., Wibisono, R., & Wadhwa, S. (2010). Comparative analysis of fruit-based functional snack bars. Food Chemistry, 119, 1369–1379.CrossRefGoogle Scholar
  97. Thorngate, J. H., & Singleton, V. L. (1994). Localization of procyani dins in grape seeds. American Journal of Enology and Viticulture, 45(2), 259–262.Google Scholar
  98. Thorp, T. G., & Klein, J. D. (1987). Export feijoas: post-harvest handling and storage techniques to maintain optimum fruit quality. Orchardist of New Zealand, 60, 164–166.Google Scholar
  99. Visser, F. R., & Burrows, J. K. (1983). Composition of New Zealand foods. I. Characteristic fruits and vegetables. Bulletin—New Zealand, Department of Scientific and Industrial Research, 235, 35–36.Google Scholar
  100. Vuotto, M. L., Basile, A., Moscatiello, V., De Sole, P., Castaldo-Cobianchi, R., Laghi, E., et al. (2000). Antimicrobial and antioxidant activities of Feijoa sellowiana fruit. International Journal of Antimicrobial Agents, 13(3), 197–201.CrossRefGoogle Scholar
  101. Wang, G. X. (2010). In vivo anthelmintic activity of five alkaloids from Macleaya microcarpa (Maxim) Fedde against Dactylogyrus intermedius in Carassius auratus. Veterinary Parasitology, 171, 305–313.CrossRefGoogle Scholar
  102. Wang, J. H., Jiang, W. B., Wang, B. G., Liu, S. J., Gong, Z. L., & Luo, Y. B. (2007). Partial properties of polyphenol oxidase in mango (Mangifera indica L. CV. “Tainong”) pulp. Journal of Food Biochemistry, 31, 35–55.CrossRefGoogle Scholar
  103. Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804–810.CrossRefGoogle Scholar
  104. Wang, X., Wang, Y.-W., & Huang, Q. (2009). Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. In Q. Huang, P. Given, & M. Qian (Eds.), Micro/nanoencapsulation of active food ingredients. ACS symposium series (Vol. 1007, pp. 198–212). Washington: American Chemical Society.CrossRefGoogle Scholar
  105. Weston, R. J. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): a review. Food Chemistry, 121(4), 923–926.CrossRefGoogle Scholar
  106. Wiryawan, I., Hertog, M., Araya, X. I. T., East, A. R., Maguire, K. M., & Mawson, A. J. (2005). At harvest fruit quality attributes of New Zealand feijoa cultivars. Acta Horticulturae, 682, 605–610.Google Scholar
  107. Yemenicioğlu, A. (2002). Control of polyphenol oxidase in whole potatoes by low temperature blanching. European Food Research and Technology, 214(4), 313–319.CrossRefGoogle Scholar
  108. Zabala, D., Echavarría, B., & Martínez, A. (2008). Actividad inhibitoria sobre la enzima dihidrofolato reductasa de extractos de esponjas marinas del golfo de Urabá. Vitae, Revista de la Facultad de Química Farmacéutica, Universidad de Antioquía, 15(2), 285–289.Google Scholar
  109. Zhang, Z. Q., Pang, X. Q., Yang, C., Ji, Z. L., & Jiang, Y. M. (2001). Role of anthocyanins degradation in Litchi pericarp browning. Food Chemistry, 75, 217–221.CrossRefGoogle Scholar
  110. Zhang, Z., Li, D., Wang, L., Ozkan, N., Chen, X. D., Mao, Z., et al. (2007). Optimization of ethanol–water extraction of lignans from flaxseed. Separation and Purification Technology, 57(1), 17–24.CrossRefGoogle Scholar
  111. Zhang, M., Wang, D., Ren S. -X., & Peng L. (2011). Head-space solid phase microextraction and GC-MS analysis of aroma compounds in Feijoa sellowiana. 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 10–12 May, Wuhan, China, pp. 1–4, ISBN: 978-1-4244-5088-6. New York: IEEE.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Dongxiao Sun-Waterhouse
    • 1
  • Wei Wang
    • 1
  • Geoffrey I. N. Waterhouse
    • 2
  • Sandhya S. Wadhwa
    • 1
  1. 1.The New Zealand Institute for Plant & Food Research LimitedMt Albert Research CentreAucklandNew Zealand
  2. 2.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations