Food and Bioprocess Technology

, Volume 6, Issue 10, pp 2860–2869 | Cite as

Stability and Quality Parameters of Probiotic Cantaloupe Melon Juice Produced with Sonicated Juice

  • Thatyane Vidal Fonteles
  • Mayra Garcia Maia Costa
  • Ana Laura Tibério de Jesus
  • Cláudia Patrícia Mourão Lima Fontes
  • Fabiano André Narciso Fernandes
  • Sueli Rodrigues
Original Paper


The use of sonicated melon juice as substrate for Lactobacillus casei growth in cantaloupe melon juice and its effect on product quality were investigated. The survival of L. casei in the fermented juice, the product color, the post-acidification and other quality parameters were evaluated in the refrigerated product (4 °C) for a period of 42 days. Storage pH, color, sugar content, lactic acid concentration, biomass and viable cells count were determined. The caloric value of the product was also evaluated. During the refrigerated storage period, acidification and a slight reduction in the number of viable cells were observed. However, a sufficient number of viable cells were observed to guarantee the beneficial properties from probiotic consumption (>8 log CFU ml−1) throughout the storage period, for both stocked samples (with and without sugar addition). The product color was also preserved during storage. The developed product resulted in a low caloric product. The caloric value was reduced during the storage period due to sugar consumption by the remaining microorganisms.


Ultrasound Lactobacillus casei NRRL B-442 Viability Probiotic juice Non-thermal processing 



The authors thank the CNPq for the financial support through the National Institute of Science and Technology of Tropical Fruit (INCT-FT) and CAPES for the scholarships.


  1. Bastos, M. S. R. (2004). Processamento mínimo de melão Cantaloupe ‘Hy-Mark’: Qualidade e Segurança. PhD thesis, Universidade Federal de Viçosa, Viçosa, Brazil. Available at: Accessed 4 August 2011.
  2. Bautista-Garfias, C. R., Ixta, O., Orduña, M., Martínez, F., Aguilar, B., & Cortés, A. (1999). Enhancement of resistance in mice treated with Lactobacillus casei: effect on Trichinella spiralis infection. Veterinary Parasitology, 80, 251–260.CrossRefGoogle Scholar
  3. Bradford, M. M. A. (1976). Rapid and sensitive method for the quantitation of microgram quantitie of protein utilizing the principle of protein-dye binding. Analytical Chemistry, 72, 248–254.Google Scholar
  4. Coelho, J. C. (2009). Elaboração de bebida probiótica a partir de suco de laranja fermentado com Lactobacillus casei. Departamento de Tecnologia de Alimentos, Fortaleza, Universidade Federal do Ceará, Brazil. Available at: Accessed 6 October 2011.
  5. Collins, M. D., Phillips, B. A., & Zanoni, P. (1989). Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. International Journal of Systematic Bacteriology, 39, 105–108.CrossRefGoogle Scholar
  6. Corcoran, B. M., Stanton, C., Fitzerald, G. F., & Ross, R. P. (2005). Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 71, 3060–3067.CrossRefGoogle Scholar
  7. Costa, M. G. M. (2011). Suco de abacaxi sonificado e fermentado por Lactobacillus casei para produção de uma nova bebida probiótica. Dissertation, Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Fortaleza, Brazil.Google Scholar
  8. Cruz, A. G., Antunes, A. E. C., Sousa, A. L. O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42, 1233–1239.CrossRefGoogle Scholar
  9. Dave, R. I., & Shah, N. P. (1997). Effectiveness of ascorbic acid as oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. International Dairy Journal, 7, 435–443.CrossRefGoogle Scholar
  10. Ding, W. K., & Shah, N. P. (2008). Survival of free and microencapsulated probiotic bacteria in orange and apple juices. International Food Research Journal, 15, 219–232.Google Scholar
  11. Elli, M., Zink, R., Reniero, R., & Morelli, L. (1999). Growth requirements of Lactobacillus johnsonii in skim and UHT milk. International Dairy Journal, 9, 507–513.CrossRefGoogle Scholar
  12. Ewe, J. A., Abdullah, W. N. W., Bhat, R., Karim, A. A., & Liong, M. T. (2012). Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment. Ultrasonics Sonochemistry, 19, 160–173.CrossRefGoogle Scholar
  13. FAO. (2003). Food energy – methods of analysis and conversion factors. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  14. FAO/WHO. (2002). Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations and World Health Organization Working Group Report.Google Scholar
  15. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90, 186–190.CrossRefGoogle Scholar
  16. Fonteles, T. V., Costa, M. G. M., De Jesus, A. L. T., & Rodrigues, S. (2011). Optimization of the fermentation of cantaloupe juice by Lactobacillus casei NRRL B-442. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0600-0. in press.
  17. Fonteles, T. V., Costa, M. G. M., De Jesus, A. L. T., Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2012). Power ultrasound processing of cantaloupe melon juice: effects on quality parameters. Food Research International, 48, 41–48.CrossRefGoogle Scholar
  18. Guo, Z., Wang, J., Yan, L., Chen, W., Liu, X., & Zhang, H. (2009). In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with elected probiotic strains. Lebensmittel-Wissenschaft und Technologie, 42, 1640–1646.Google Scholar
  19. Hedberg, M., Hasslöf, P., Sjöström, I., Twetman, S., & Stecksén-Blicks, C. (2008). Sugar fermentation in probiotic bacteria – an in vitro study. Oral Microbiology and Immunology, 23, 482–485.CrossRefGoogle Scholar
  20. Higby, W. K. (1962). A simplified method for determination of some the carotenoid distribution in natura and carotene – fortified orange juice. Journal Food Science, 27, 42–49.Google Scholar
  21. Kailasapathy, K., & Rybka, S. (1997). Lactobacillus acidophilus and Bifidobacterium spp.–their therapeutic potential and survival in yoghurt. Australian Journal of Dairy Technology, 52, 28–35.Google Scholar
  22. Knorr, D. (2003). Impact of non-thermal processing on plant metabolites. Journal of Food Engineering, 56, 131–134.CrossRefGoogle Scholar
  23. Macedo, L. N., Luchese, R. H., Guerra, A. F., & Barbosa, C. G. (2008). Efeito prebiótico do mel sobre o crescimento e viabilidade de Bifidobacterium spp. e Lactobacillus spp. em leite. Ciência e Tecnologia de Alimentos, 28, 935–942.CrossRefGoogle Scholar
  24. McClements, D. J., & Decker, E. A. (2007). In: S. Damodaran, K. L. Parkin, O. R. Fennema (Editors), Fennema's Food Chemistry, 4th ed. Boca Raton: CRC Press.Google Scholar
  25. Minolta. (1998). Precise color communication — Color control from perception to instrumentation (p. 59). Osaka: Minolta Co. Ltd.Google Scholar
  26. Mousavi, Z. E., Mousavi, S. M., Razavi, S. H., Emam-Djomeh, Z., & Kiani, H. (2011). Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27, 123–128.CrossRefGoogle Scholar
  27. Nancib, A., Nancib, N., & Boudrant, J. (2009). Production of lactic acid from date juice extract with free cells of single and mixed cultures of Lactobacillus casei and Lactobacoccus lactis. World Journal of Microbiology and Biotechnology, 25, 1423–1429.CrossRefGoogle Scholar
  28. Neves, L. S. (2005). Fermentado probiótico de maçã. PhD thesis, Universidade Federal do Paraná. Available at: Accessed 1 February 2011.
  29. Ohashi, Y., & Ushida, K. (2009). Health-beneficial effects of probiotics: its mode of action. Animal Science Journal, 80, 361–371.CrossRefGoogle Scholar
  30. Oliveira, M. N., Sodini, I., Remeuf, F., Tissier, J. P., & Corrieu, G. (2002). Manufacture of fermented lactic beverages containing probiotic cultures. Journal of Food Science, 67, 2336–2341.CrossRefGoogle Scholar
  31. Østlie, H. M., Helland, M. H., & Narvhus, J. A. (2003). Growth and metabolism of selected strains of probiotic bacteria in milk. International Journal of Food Microbiology, 87, 17–27.CrossRefGoogle Scholar
  32. Pereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 4, 1276–1283.CrossRefGoogle Scholar
  33. Peryam, D. R., & Pilgrim, F. J. (1954). Hedonic scale method of measuring food preferences. Food Technology, 11, 9–14.Google Scholar
  34. Prado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41, 111–123.CrossRefGoogle Scholar
  35. Prasad, J., Mcjarrow, P., & Gopal, P. (2003). Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Applied and Environmental Microbiology, 69, 917–925.CrossRefGoogle Scholar
  36. Sanz, Y. (2007). Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: a way of selecting improved probiotic strains. International Dairy Journal, 17, 1284–1289.CrossRefGoogle Scholar
  37. Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17, 1262–1277.CrossRefGoogle Scholar
  38. Sheehan, V. M., Ross, P., & Fitzgerald, G. F. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science and Emerging Technologies, 8, 279–284.CrossRefGoogle Scholar
  39. Silveira, M. S., Fontes, C. P. M. L., Guilherme, A. A., Fernandes, F. A. N., & Rodrigues, S. (2012). Cashew apple juice as substrate for lactic acid production. Food and Bioprocess Technology, 5, 947–955.CrossRefGoogle Scholar
  40. Siqueira, A. M. d. A., da Costa, J. M. C., Afonso, M. R. A., & Clemente, E. (2011). Pigments of guava paluma cultivar stored under environmental conditions. African Journal of Food Science, 5, 320–323.Google Scholar
  41. Stone, H., & Sidel, J. L. (1985). Sensory evaluation practices. London: Academic Press, p 338.Google Scholar
  42. Vinderola, C. G., Bailo, N., & Reinheimer, J. A. (2000). Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Research International, 33, 97–102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thatyane Vidal Fonteles
    • 1
  • Mayra Garcia Maia Costa
    • 2
  • Ana Laura Tibério de Jesus
    • 2
  • Cláudia Patrícia Mourão Lima Fontes
    • 2
  • Fabiano André Narciso Fernandes
    • 1
  • Sueli Rodrigues
    • 2
  1. 1.Centro de Tecnologia, Departamento de Engenharia Química (DEQ), Campus do PiciUniversidade Federal do CearáFortalezaBrazil
  2. 2.Centro de Ciências Agrárias, Departamento de Tecnologia de Alimentos (DTA), Campus do PiciUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations