Food and Bioprocess Technology

, Volume 6, Issue 12, pp 3613–3619 | Cite as

Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images

  • D. Lorente
  • J. Blasco
  • A. J. Serrano
  • E. Soria-Olivas
  • N. Aleixos
  • J. Gómez-Sanchis


Hyperspectral imaging systems allow to detect the initial stages of decay caused by fungi in citrus fruit automatically, instead of doing it manually under dangerous ultraviolet illumination, thus preventing the fungal infestation of other sound fruit and, consequently, the enormous economical losses generated. However, these systems present the disadvantage of generating a huge amount of data, which is necessary to select for achieving some result useful for the sector. There are numerous feature selection methods to reduce dimensionality of hyperspectral images. This work compares a feature selection method using the area under the receiver operating characteristic (ROC) curve with other common feature selection techniques, in order to select an optimal set of wavelengths effective in the detection of decay in a citrus fruit using hyperspectral images. This comparative study is done using images of mandarins with the pixels labelled in five different classes: two types of healthy skin, two types of decay and scars, ensuring that the ROC technique generally provides better results than the other methods.


Computer vision Citrus fruit Decay Non-destructive inspection Hyperspectral imaging ROC curve Feature selection 



This work has been partially funded by the Universitat de València through project UV-INV-AE11-41271, by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria de España (INIA) through research project RTA2009-00118-C02-01 and by the Ministerio de Ciencia e Innovación de España (MICINN) through research project DPI2010-19457, both projects with the support of European FEDER funds.


  1. Abe, N., Kudo, M., Toyama, J., & Shimbo, M. (2000). A divergence criterion for classifier independent feature selection. Lecture notes in computer science. Advances in Pattern Recognition, 1876, 668–676.CrossRefGoogle Scholar
  2. Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393.CrossRefGoogle Scholar
  3. Bonnlander, B.V., & Weigend, A.S. (1994). Selecting input variables using mutual information and nonparametric density estimation. In: Proceedings of the 1994 International Symposium on Artificial Neural Networks (ISANN’94), Tainan, Taiwan, pp. 42–50.Google Scholar
  4. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.CrossRefGoogle Scholar
  5. Choi, E., & Lee, C. (2003). Feature extraction based on the Bhattacharyya distance. Pattern Recognition, 36(8), 1703–1709.CrossRefGoogle Scholar
  6. Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.CrossRefGoogle Scholar
  7. Eckert, J., & Eaks, I. (1989). Postharvest disorders and diseases of citrus. In W. Reuther, E. C. Calavan, & G. E. Carman (Eds.), The citrus industry. Berkeley: University California Press.Google Scholar
  8. ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT, 41, 337–345.CrossRefGoogle Scholar
  9. ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52, 1–8.CrossRefGoogle Scholar
  10. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.CrossRefGoogle Scholar
  11. Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.CrossRefGoogle Scholar
  12. Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785.CrossRefGoogle Scholar
  13. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501.CrossRefGoogle Scholar
  14. Kondo, N., Ahmad, U., Monta, M., & Murase, H. (2000). Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Computers and Electronics in Agriculture, 29, 135–147.CrossRefGoogle Scholar
  15. Kullback, S. (1987). The Kullback–Leibler distance. The American Statistician, 41, 340–341.Google Scholar
  16. Kurita, M., Kondo, N., Shimizu, H., Ling, P., Falzea, P. D., Shiigi, T., et al. (2009). A double image acquisition system with visible and UV LEDs for citrus fruit. Journal of Robotics and Mechatronics, 21(4), 533–540.Google Scholar
  17. Li, S., Liao, C., & Kwok, J. (2006). Gene feature extraction using T-test statistics and Kernel partial least squares. Lecture notes in computer science. Neural Information and Processing, 4234, 11–20.CrossRefGoogle Scholar
  18. Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78(1), 38–48.CrossRefGoogle Scholar
  19. Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2005). Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Applied Spectroscopy, 59(1), 78–85.CrossRefGoogle Scholar
  20. López-García, F., Andreu-García, A., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197.CrossRefGoogle Scholar
  21. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2011). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0737-x.
  22. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142.CrossRefGoogle Scholar
  23. Ouardighi, A., Akadi, A., Aboutajdine, D. (2007). Feature selection on supervised classification using Wilks lambda statistic. In: International Symposium on Computational Intelligence and Intelligent Informatics ISCIII07, 1, pp. 51–55.Google Scholar
  24. Palou, L., Smilanik, J., Usall, J., & Viñas, I. (2001). Control postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Disease, 85, 371–376.CrossRefGoogle Scholar
  25. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238.CrossRefGoogle Scholar
  26. Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(1), S110–S122.CrossRefGoogle Scholar
  27. Ponsa, D., & López, A. (2007). Feature selection based on a new formulation of the minimal-redundancy-maximal-relevance criterion. Lecture notes in computer science. Pattern Recognition and Image Analysis, 4477, 47–54.CrossRefGoogle Scholar
  28. Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191.CrossRefGoogle Scholar
  29. Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93.CrossRefGoogle Scholar
  30. Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Research, 5, 101–141.Google Scholar
  31. Rodgers, J. L., & Nicewander, A. W. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.CrossRefGoogle Scholar
  32. Serrano, A.J., Soria, E., Martín, J.D., Magdalena, R. Gómez, J. (2010). Feature selection using ROC curves on classification problems. In: International Joint Conference on Neural Networks, IJCNN 2010. 28th–30th July 2010. Barcelona, Spain. Proceedings, pp. 1980–1985.Google Scholar
  33. Shih, F. Y. (2010). Image processing and pattern recognition: fundamentals and techniques. New York: Wiley-IEEE.CrossRefGoogle Scholar
  34. Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48, 341–346.CrossRefGoogle Scholar
  35. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.CrossRefGoogle Scholar
  36. Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1), 27–36.CrossRefGoogle Scholar
  37. Zude, M. (Ed.). (2008). Optical monitoring of fresh and processed agricultural crops. Boca Raton: CRC.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. Lorente
    • 1
  • J. Blasco
    • 1
  • A. J. Serrano
    • 2
  • E. Soria-Olivas
    • 2
  • N. Aleixos
    • 3
  • J. Gómez-Sanchis
    • 2
  1. 1.Centro de AgroingenieríaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
  2. 2.Intelligent Data Analysis Laboratory, IDAL, Electronic Engineering DepartmentUniversitat de ValènciaBurjassotSpain
  3. 3.Instituto en Bioingeniería y Tecnología Orientada al Ser HumanoUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations