Food and Bioprocess Technology

, Volume 6, Issue 3, pp 628–647 | Cite as

Nanoencapsulation Techniques for Food Bioactive Components: A Review

  • P. N. Ezhilarasi
  • P. Karthik
  • N. Chhanwal
  • C. AnandharamakrishnanEmail author
Review Paper


The protection and controlled release of bioactive compounds at the right time and the right place can be implemented by encapsulation. Nanoencapsulation remains to be the one of the most promising technologies having the feasibility to entrap bioactive compounds. Nanoencapsulation of bioactive compounds has versatile advantages for targeted site-specific delivery and efficient absorption through cells. However, researches in the application of nanotechnology in the food industry have been very limited and there are only a few review articles that explored the nanoencapsulation technology. This review focuses on the various nanoencapsulation techniques such as emulsification, coacervation, inclusion, complexation nanoprecipitation, emulsification–solvent evaporation, and supercritical fluid for food ingredients. Drying techniques such as spray drying and freeze drying for stabilization of nanoparticles are also discussed. Current state of knowledge, limitations of these techniques, and recent trends are also discussed. Finally, safety and regulatory issues in the nanoencapsulation of bioactive compounds are also highlighted.


Nanoencapsulation Bioactive compounds Nanoemulsions Biopolymers Drying techniques 



We wish to thank the University Grant Commission (UGC)—New Delhi for awarding Junior Research Fellowship to P.N. Ezhilarasi and the Council of Scientific and Industrial Research (CSIR)—New Delhi for awarding Senior Research Fellowship to P. Karthik and N. Chhanwal.


  1. Abdelwahed, W., Degobert, G., Trainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58, 1688–1713.CrossRefGoogle Scholar
  2. Abdelwahed, W., Degobert, G., & Fess, H. (2006). A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. International Journal of Pharmaceutics, 309(1–2), 178–188.CrossRefGoogle Scholar
  3. Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid and Interface Science, 14, 3–15.CrossRefGoogle Scholar
  4. Anand, P., Nair, H. B., Sung, B., Kunnumakkara, A. B., Yadav, V. R., Tekmal, R. R., & Aggarwal, B. B. (2010). Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochemical Pharmacology, 79(3), 330–338.CrossRefGoogle Scholar
  5. Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2007). Effects of process variables on denaturation of whey protein during spray drying. Drying Technology, 25(8), 799–807.CrossRefGoogle Scholar
  6. Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2008). Loss of solubility of α-lactalbumin and β-lactoglobulin during spray drying of whey proteins. LWT- Food Science and Technology, 41, 270–277.CrossRefGoogle Scholar
  7. Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2010). Spray–freeze- drying of whey proteins at sub-atmospheric pressures. Dairy Science & Technology, 90, 321–334.CrossRefGoogle Scholar
  8. Anarjan, N., Mirhosseini, H., Baharin, B. S., & Tan, C. P. (2011). Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT- Food Science and Technology, 44(7), 1658–1665.CrossRefGoogle Scholar
  9. Augustin, M. A., & Hemar, Y. (2009). Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Review, 38(4), 902–912.CrossRefGoogle Scholar
  10. Augustin, M. A., & Sanguansri, P. (2009). Nanostructured materials in the food industry. Advances in Food and Nutrition Research, 58(4), 183–213.CrossRefGoogle Scholar
  11. Bawa, R., Bawa, T. S. R., Maebius, S. B., Flynn, T., & Wei, C. (2005). Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine: nanotechnology, biology, and medicine, 1(2) 150–158.Google Scholar
  12. Bejrapha, P., Min, S. G., Surassmo, S., & Choi, M. J. (2010). Physicothermal properties of freeze-dried fish oil nanocapsules frozen under different conditions. Drying Technology, 28(4), 481–489.CrossRefGoogle Scholar
  13. Bejrapha, P., Surassmo, S., Choi, M., Nakagawa, K., & Min, S. (2011). Studies on the role of gelatin as a cryo- and lyo-protectant in the stability of capsicum oleoresin nanocapsules in gelatin matrix. Journal of Food Engineering, 105(2), 320–331.CrossRefGoogle Scholar
  14. Belhaj, N., Arab-Tehrany, E., & Linder, M. (2010). Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochemistry, 45(2), 187–195.CrossRefGoogle Scholar
  15. Chacon, M., Molpeceres, J., Berges, L., Guzman, M., & Aberturas, M. R. (1999). Stability and freeze-drying of cyclosporine loaded poly(d,l-lactic-glycolide) carriers. European Journal of Pharmaceutical Science, 8, 99–107.CrossRefGoogle Scholar
  16. Chau, C. F., Wu, S. H., & Yen, G. C. (2007). The development of regulations for food nanotechnology. Trends in Food Science and Technology, 18(5), 269–280.CrossRefGoogle Scholar
  17. Chen, L. Y., Remondetto, G. E., & Subirade, M. (2006). Food protein based materials as nutraceutical delivery systems. Trends in Food Science and Technology, 17(5), 272–283.CrossRefGoogle Scholar
  18. Chen, H., Weiss, J., & Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technology, 60(3), 30–36.Google Scholar
  19. Cheong, J. N., Tan, C. P., Yaakob, B., Che, M., & Misran, M. (2008). α-Tocopherol nanodispersions: preparation, characterization and stability evaluation. International Journal of Food Engineering, 89(2), 204–209.CrossRefGoogle Scholar
  20. Chi-Fai, C., Shiuan-Huei, W., & Gow-Chin, Y. (2007). The development of regulations for food nanotechnology. Trends in Food Science and Technology, 18(5), 269–280.CrossRefGoogle Scholar
  21. Choi, M. J., Briancon, S., Andrieu, J., Min, S. G., & Fessi, H. (2004). Effect of freeze-drying process conditions on the stability of nanoparticles. Drying Technology, 22, 335–346.CrossRefGoogle Scholar
  22. Choi, M. J., Ruktanonchai, U., Min, S. G., Chun, J. Y., & Soottitantawat, A. (2010). Physical characteristics of fish oil encapsulated by ß-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusion method. Food Chemistry, 119(4), 1694–1703.CrossRefGoogle Scholar
  23. Chong, G. H., Yunus, R., Abdullah, N., Choong, T. S. Y., & Spotar, S. (2009). Coating and encapsulation of nanoparticles using supercritical antisolvent. American Journal of Applied Science, 6, 1352–1358.CrossRefGoogle Scholar
  24. Couvreur, P., Dubernet, C., & Puisieux, F. (1995). Controlled drug delivery with nanoparticles: current possibilities and future trends. European Journal of Pharmaceutics and Biopharmaceutics, 41, 2–13.Google Scholar
  25. Dandekar, P., Jain, R., Kumar, C., Subramanian, S., Samuel, G., Venkatesh, M., & Patravale, V. (2009). Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. Journal of Biomedical Nanotechnology, 5(5), 445–455.CrossRefGoogle Scholar
  26. Dandekar, P. P., Jain, R., Patil, S., Dhumal, R., Tiwari, D., Sharma, S., Vanage, G., & Patravale, V. (2010). Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. Journal of Pharmaceutical Science, 99(12), 4992–5010.CrossRefGoogle Scholar
  27. De Kruif, C. G., Weinbreck, F., & De Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid and Interface Science, 9(5), 340–349.CrossRefGoogle Scholar
  28. De Paz, E., Martin, A., Estrella, A., Rodriguez-Rojo, S., Matias, A. A., Duarte, C. M. M., & Cocero, M. J. (2012). Formulation of β-carotene by precipitation from pressurized ethyl acetate-on water emulsions for application as natural colorant. Food Hydrocolloid, 26(1), 17–27.CrossRefGoogle Scholar
  29. Donofrio, R. (2006). Rapid safety testing of food nanomaterials using high content screening and zebrafish model. Nano and Micro Technologies in the Food and Health Food Industries Conference. October 25–26, 2006, Amsterdam.Google Scholar
  30. Dube, A., Ken, N., Nicolazzo, J. A., & Ian, L. (2010). Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry, 122(3), 662–667.CrossRefGoogle Scholar
  31. Dupeyron, D., Rieumont, J., Gonzalez, M., & Castano, V. M. (2009). Protein delivery by enteric copolymer nanoparticles, Journal of Dispersion Science and Technology, 30(8), 1188–1194.Google Scholar
  32. EFSA. (2009). (EFSA) European Food Safety Authority. Scientific opinion on ‘The potential risks arising from nanoscience and nanotechnologies on food and feed safety’. Scientific opinion of the Scientific Committee, adopted on 10 February 2009. The EFSA Journal, 958, 1–39.Google Scholar
  33. Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery system. Trends in Food Science and Technology, 23(1), 13–27.CrossRefGoogle Scholar
  34. FDA (2006). Food and Drug Administration (FDA) forms internal nanotechnology task force. Available from
  35. Ferreira, I., Rocha, S., & Coelho, M. (2007). Encapsulation of antioxidants by spray-drying. Chemical Engineering Transactions, 11(9), 713–717.Google Scholar
  36. Food and Agricultural Organization. (2009). FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety, implications meeting report.Google Scholar
  37. Galindo-Rodriguez, S., Allemann, E., Fessi, H., & Doelker. (2004). Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification–diffusion and nanoprecipitation methods. Pharmaceutical Research, 21(8), 1428–1439.CrossRefGoogle Scholar
  38. Gan, Q., & Wang, T. (2007). Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces. B, Biointerfaces, 59(1), 24–34.CrossRefGoogle Scholar
  39. Garti, N., & Benichou, A. (2001). Double emulsions for controlled-release applications: progress and trends. In J. Sjoblom (Ed.), Encyclopedic handbook of emulsion technology (pp. 377–407). New York: Marcel Dekker.Google Scholar
  40. Garti, N., & Benichou, A. (2004). Recent developments in double emulsions for food applications. In S. Friberg, K. Larsson, & J. Sjoblom (Eds.), Food emulsions (4th ed., pp. 353–412). New York: Marcel Dekker.Google Scholar
  41. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. (2003). Scanning electron microscopy and X-ray microanalysis. New York: Kluwer Academic.CrossRefGoogle Scholar
  42. Gou, M., Men, K., Shi, H., Xiang, M., Zhang, J., Song, J., Long, J., Wan, Y., Luo, F., Zhao, X., & Qian, Z. (2011). Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 3(4), 1558–1567.CrossRefGoogle Scholar
  43. Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15(7–8), 330–347.CrossRefGoogle Scholar
  44. Graveland-Bikker, J. F., & De Kruif, C. G. (2006). Unique milk protein based nanotubes: food and nanotechnology meet. Trends in Food Science and Technology, 17(5), 196–203.CrossRefGoogle Scholar
  45. Guterres, S. S. (2009). Spray drying technique to prepare innovative nanoparticlulated formulations for drug administration: a brief overview. Brazilian Journal of Physics, 39, 205–209.CrossRefGoogle Scholar
  46. Hadaruga, N. G., Hadaruga, D. I., Paunescu, V., Tatu, C., Ordodi, V. L., Bandur, G., & Lupea, A. X. (2006). Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chemistry, 99(3), 500–508.CrossRefGoogle Scholar
  47. Hassellov, M., Kammer, F. V., & Beckett, R. (2007). Characterisation of aquatic colloids and macromolecules by field-flow fractionation. In K. J. Wilkinson & J. R. Lead (Eds.), Environmental colloids and particles: behaviour, structure and characterization (pp. 223–276). Chichester: Wiley.Google Scholar
  48. Heyang, J., Fei, X., Cuilan, J., Yaping, Z., & Lin, H. (2009). Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chinese Journal of Chemical Engineering, 17(4), 672–677.CrossRefGoogle Scholar
  49. Huang, Q., Yu, H., & Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75(1), R50–R57.CrossRefGoogle Scholar
  50. Hughes, G. A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 1(1), 22–30.CrossRefGoogle Scholar
  51. Jafari, S. M., He, Y., & Bhandari, B. (2007a). Encapsulation of nanopartricles of d-limonene by spray drying: role of emulsifiers and emulsifying agent. Drying Technology, 25(6), 1079–1089.Google Scholar
  52. Jafari, S. M., He, Y., & Bhandari, B. (2007b). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.CrossRefGoogle Scholar
  53. Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172–183.CrossRefGoogle Scholar
  54. Jincheng, W., Xiaoyu, Z., & Siahao, C. (2010). Preparation and properties of nanoencapsulated capsaicin by complex coacervation method. Chemical Engineering Communumication, 197(7), 919–933.CrossRefGoogle Scholar
  55. Jung, J., & Perrut, M. (2001). Particle design using supercritical fluids: literature and patent survey. Journal of Supercritical Fluids, 20, 179–219.CrossRefGoogle Scholar
  56. Kawashima, Y. (2001). Nanoparticulate system for improved drug delivery. Advanced Drug Delivery Reviews, 47, 1–2.CrossRefGoogle Scholar
  57. Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 9(2), 170–175.CrossRefGoogle Scholar
  58. Kikic, I., Lora, M., & Bertucco, A. (1997). A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS). Industrial and Engineering Chemistry Research, 36, 5507–5515.CrossRefGoogle Scholar
  59. Konan, Y. N., Gurny, R., & Allémann, E. (2002). Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. International Journal of Pharmaceutics, 233, 239–252.CrossRefGoogle Scholar
  60. Kuang, S. S., Oliveira, J. C., & Crean, A. M. (2010). Microencapsulation as a tool for incorporating bioactive ingredients into food. Critical Reviews in Food Science and Nutrition, 50, 951–968.CrossRefGoogle Scholar
  61. Kumar, M. N. V. R., & Kumar, N. (2001). Polymeric controlled drug-delivery systems: perspective issues and opportunities. Drug Development and Industrial Pharmacy, 27, 1–30.CrossRefGoogle Scholar
  62. Kumari, A., Yadav, S. K., Pakade, Y. B., Singh, B., & Yadav, S. C. (2010). Development of biodegradable nanoparticles for delivery of quercetin. Colloid Surface B:Biointerfaces, 80(2), 184–192.CrossRefGoogle Scholar
  63. Kuriakose, R., & Anandharamakrishnan, C. (2010). Computational fluid dynamics (CFD) applications in spray drying of food products. Trends in Food Science & Technology, 21, 383–398.CrossRefGoogle Scholar
  64. Kwon, S. S., Nam, Y. S., Lee, J. S., Ku, B. S., Han, S. H., Lee, J. Y., & Chang, I. S. (2002). Preparation and characterization of coenzyme Q10-loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 210, 95–104.CrossRefGoogle Scholar
  65. Lakkis, J. M. (2007). Encapsulation and controlled release technologies in food systems. Iowa: Blackwell.CrossRefGoogle Scholar
  66. Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16(6), 721–727.CrossRefGoogle Scholar
  67. Leong, W. F., Lai, O. M., Long, K., Yaakob, B., Mana, C., Misran, M., & Tan, C. P. (2011). Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chemistry, 129(1), 77–83.CrossRefGoogle Scholar
  68. Lira, M. C. B., Ferraz, M. S., da Silva, D. G. V. C., Cortes, M. E., Teixeira, K. I., Caetano, N. P., Sinisterra, R. D., & Santos-Magalhaes, N. S. (2009). Inclusion complex of usnic acid with β-cyclodextrin: characterization and nanoencapsulation into liposomes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 64(3–4), 215–224.CrossRefGoogle Scholar
  69. Lopez, A., Gavara, R., & Lagaron, J. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science and Technology, 17(10), 567–575.CrossRefGoogle Scholar
  70. Luo, Y., Zhang, B., Whent, M., Yu, L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloid Surface B: Biointerfaces, 85(2), 145–152.CrossRefGoogle Scholar
  71. Luykx, D. M. A. M., Peters, R. J. B., Van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56, 8231–8247.CrossRefGoogle Scholar
  72. Masters, K. (1991). Spray drying. Esex: Longman.Google Scholar
  73. Mavrocordatos, D., Pronk, W., & Boller, M. (2004). Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Science and Technology, 50, 9–18.Google Scholar
  74. McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Review in Food Science and Nutrition, 49(6), 577–606.CrossRefGoogle Scholar
  75. Meena, K. S., Bairwa, N. K., & Parashar, B. (2011). Formulation and in vitro evaluation of verapamil hydrochloride loaded microcapsule using different polymer. Asian Journal of Biochemical and Pharmaceutical Research, 1(3), 528–538.Google Scholar
  76. Mishra, B., Patel, B. B., & Tiwari, S. (2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 9–24.CrossRefGoogle Scholar
  77. Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., & Miller, B. (2007). The pro-inflammatory effects of low-toxicity low solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Journal of Occupational and Environmental Medicine, 64(9), 609–615.CrossRefGoogle Scholar
  78. Morris, V. (2007). Nanotechnology and food. IUFoST Scientific Information Bulletin, International Union of Food Science & Technology, Canada. Available at Nanotechnology.pdf.
  79. Mozafari, M. R., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z. E., & Singh, H. (2006). Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038–2045.CrossRefGoogle Scholar
  80. Mueller, R. H., Maeder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50, 161–177.CrossRefGoogle Scholar
  81. Mukerjee, A., & Vishwanatha, J. K. (2009). Formulation, characterization and evaluation of curcumin loaded PLGA nanosphere for cancer therapy. Journal of Anticancer Research, 29(10), 3867–3875.Google Scholar
  82. Nakagawa, K., Surassmo, S., Min, S. G., & Choi, M. J. (2011). Dispersibility of freeze-dried poly(epsilon-caprolactone) nanocapsules stabilized by gelatin and the effect of freezing. Journal of Food Engineering, 102(2), 177–188.CrossRefGoogle Scholar
  83. Neethirajan, S., & Jayas, D. S. (2010). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.CrossRefGoogle Scholar
  84. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nano level. Science, 311(5761), 622–627.CrossRefGoogle Scholar
  85. Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Riviere, N. M., Warheit, D., & Yang, H. (2005). Principles for characterizing the potential health effects from exposure to nano materials: elements of a screening strategy. Particle and Fiber Toxicology. doi: 10.1186/1743-8977-2-8 (open access).
  86. Okuyama, K., & Lenggoro, W. I. (2003). Preparation of nanoparticles via spray route. Chemical Engineering Science, 58, 537–547.CrossRefGoogle Scholar
  87. Orive, G., Anitua, E., Pedraz, J. L., & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10, 682–692.CrossRefGoogle Scholar
  88. Pillai, D. S., Prabhasankar, P., Jena, B. S., & Anandharamakrishnan, C. (2012). Microencapsulation of Garcinia cowa fruit extract and effect of its use on pasta process and quality. International Journal of Food Properties 15(3), 590–604.Google Scholar
  89. Preetz, C., Rube, A., Reiche, I., Hause, G., & Mader, K. (2008). Preparation and characterization of biocompatible oil-loaded polyelectrolyte nanocapsules. Nanomedicine: Nanotechnology, Biology and Medicine, 4(2), 106–114.CrossRefGoogle Scholar
  90. Quintanar-Guerrero, D., Allemann, E., Fessi, H., & Doelker, E. (1998). Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Development and Industrial Pharmacy, 24(12), 1113–1128.CrossRefGoogle Scholar
  91. Quintanilla-Carvajal, M. X., Camacho-Diaz, B. H., Meraz-Torres, L. S., Chanona-Perez, J. J., Alamilla-Beltran, L., Jimenez-Aparicio, A., & Gutierrez-Lopez, G. F. (2010). Nanoencapsulation: a new trend in food engineering processing. Food Engineering Review, 2(1), 39–50.CrossRefGoogle Scholar
  92. Reis, C. P., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2, 8–21.CrossRefGoogle Scholar
  93. Ribeiro, H. S., Chua, B. S., Ichikawab, S., & Nakajima, M. (2008). Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloids, 22(1), 12–17.CrossRefGoogle Scholar
  94. Royal Society. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. July 2004. Available at:
  95. Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development—a food industry perspective. Trends in Food Science and Technology, 17(10), 547–556.CrossRefGoogle Scholar
  96. SCENIHR (2009). Risk assessment of products of nanotechnologies. European Commission, Scientific Committee on Emerging and Newly Identified Health Risks.
  97. Sekhon, B. S. (2010). Food nanotechnology—an overview. Nanotechnology, Science and Applications, 3(10), 1–15.Google Scholar
  98. Shegokar, R., & Muller, R. H. (2010). Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. International Journal of Pharmaceutics, 399, 129–139.CrossRefGoogle Scholar
  99. Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Cunha, M. G. C., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification–evaporation technique. Journal of Food Engineering, 102(2), 130–135.CrossRefGoogle Scholar
  100. Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2012). Nanoemulsions for food applications: development and characterization. Food Bioprocess Technology, 5, 854–867.CrossRefGoogle Scholar
  101. Singh, R. P., & Heldman, D. R. (2009). Introduction to food engineering (4th ed.). New York: Academic.Google Scholar
  102. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid and Interface Science, 10(3–4), 102–110.CrossRefGoogle Scholar
  103. Sonneville-Aubrun, O., Simmonet, J. T., & Alloret, F. L. (2004). Nanoemulsions: a new vehicle for skin care products. Advances in Colloid and Interface Science, 108–109, 145–149.CrossRefGoogle Scholar
  104. Sowasod, N., Charinpanitkul, S. T., & Tanthapanichakoon, W. (2008). Nanoencapsulation of curcumin in biodegradable chitosan via multiple emulsion/solvent evaporation. International Journal of Pharmaceutics, 347, 93–101.CrossRefGoogle Scholar
  105. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82–89.CrossRefGoogle Scholar
  106. Surassamo, S., Bejrapha, P., Min, S. G., & Choi, M. J. (2010). Effect of surfactants on capsicum oleoresin loaded nanocapsules formulated through emulsion diffusion method. Food Research International, 43(1), 8–17.CrossRefGoogle Scholar
  107. Suwannateep, N., Banlunara, W., Wanichwecharungruang, S. P., Chiablaem, K., Lirdprapamongkol, K., & Svasti, J. (2011). Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. Journal of Controlled Release, 151(2), 176–182.CrossRefGoogle Scholar
  108. Tachaprutinun, A., Udomsup, T., Luadthong, C., & Wanichwecharungruang, S. (2009). Preventing the thermal degradation of astaxanthin through nanoencapsulation. International Journal of Pharmaceutics, 374(1–2), 119–124.CrossRefGoogle Scholar
  109. Teeranachaideekul, V., Muller, R. H., & Junyaprasert, V. B. (2007). Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. International Journal of Pharmaceutics, 340, 198–206.CrossRefGoogle Scholar
  110. Tice, T. R., & Gilley, R. M. (1985). Preparation of injectable controlled-release microcapsules by solvent-evaporation process. Journal of Controlled Release, 2, 343–352.CrossRefGoogle Scholar
  111. Tiede, K., Boxall, A., Tear, S. P., Lewis, J., David, H., & Hassellov, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives and Contaminants Part A, 25(7), 795–821.CrossRefGoogle Scholar
  112. Tiyaboonchai, W., Tungpradit, W., & Plianbangchang, P. (2007). Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 337(1–2), 299–306.CrossRefGoogle Scholar
  113. Tolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food Hydrocolloid, 17(1), 1–23.CrossRefGoogle Scholar
  114. Turgeon, S. L., Schmidt, C., & Sanchez, C. (2007). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloids and Interface Science, 12, 196–205.CrossRefGoogle Scholar
  115. Turk, M., & Lietzow, R. (2004). Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution. AAPS Pharmaceutical Science Technology, 5, 1–10.Google Scholar
  116. Varma, M. V. S., Kaushal, A. M., Garg, A., & Garg, S. (2004). Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2, 43–57.CrossRefGoogle Scholar
  117. Walstra, P. (1996). Emulsion stability. In P. Becher (Ed.), Encyclopedia of emulsion technology (pp. 1–62). New York: Marcel Dekker.Google Scholar
  118. Wang, J. C., Chen, S. H., & Xu, Z. C. (2008a). Synthesis and properties research on the nanocapsulated capsaicin by simple coacervation method. Journal of Dispersion Science and Technology, 29(5), 687–695.CrossRefGoogle Scholar
  119. Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Hoa, C. T., & Huang, Q. (2008b). Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 108(2), 419–424.CrossRefGoogle Scholar
  120. Weiss, J., Takhistov, P., & Mcclements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9), R107–R116.CrossRefGoogle Scholar
  121. Xing, F., Cheng, G., Yi, K., & Ma, L. (2004). Nanoencapsulation of capsaicin by complex coacervation of gelatin, acacia, and tannins. Journal of Applied Polymer Science, 96(6), 2225–2229.CrossRefGoogle Scholar
  122. Yuan, Y., Gao, Y., Mao, L., & Zhao, J. (2008). Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chemistry, 107(3), 1300–1306.CrossRefGoogle Scholar
  123. Yuan, Y., Yanxiang, G., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68.CrossRefGoogle Scholar
  124. Zambaux, M., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M., Labrude, P., & Vigneron, C. (1998). Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method. Journal of Controlled Release, 50, 31–40.CrossRefGoogle Scholar
  125. Zhang, W., Rong, J., Wang, Q., & He, X. (2009). The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology, 20(27), 275101(Open access).Google Scholar
  126. Zhao, L., Xiong, H., Peng, H., Wang, Q., Han, D., Bai, C., Liu, Y., Shi, S., & Deng, B. (2011). PEG-coated lyophilized pro-liposomes: preparation, characterizations and in vitro release evaluation of vitamin E. European Food Research and Technology, 232(4), 647–654.CrossRefGoogle Scholar
  127. Zimet, P., & Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloid, 23(4), 1120–1126.CrossRefGoogle Scholar
  128. Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulation use in food products or processes and methods to make them. In N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation technique for active food ingredients and food processing (pp. 3–29). New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • P. N. Ezhilarasi
    • 1
  • P. Karthik
    • 1
  • N. Chhanwal
    • 1
  • C. Anandharamakrishnan
    • 1
    Email author
  1. 1.Human Resource DevelopmentCSIR—Central Food Technological Research InstituteMysoreIndia

Personalised recommendations