Advertisement

Food and Bioprocess Technology

, Volume 6, Issue 10, pp 2831–2843 | Cite as

PTR-ToF-MS, A Novel, Rapid, High Sensitivity and Non-Invasive Tool to Monitor Volatile Compound Release During Fruit Post-Harvest Storage: The Case Study of Apple Ripening

  • Christos Soukoulis
  • Luca Cappellin
  • Eugenio Aprea
  • Fabrizio Costa
  • Roberto Viola
  • Tilmann D. Märk
  • Flavia Gasperi
  • Franco Biasioli
Original Paper

Abstract

In the present study, the potential of PTR-ToF-MS for addressing fundamental and technical post-harvest issues was tested on the non-destructive and rapid monitoring of volatile compound evolution in three apple cultivars (‘Golden Delicious’, ‘Braeburn’ and ‘Gold Rush’) during 25 days of post-harvest shelf life ripening. There were more than 800 peaks in the PTR-ToF-MS spectra of apple headspace and many of them were associated with relevant compounds. Besides the ion produced upon proton transfer, we used the ion at mass 28.031 (C2H 4 + ) produced by charge transfer from residual O 2 + as a monitor for ethylene concentration. ‘Golden Delicious’ apples were characterised by higher ethylene emission rates than ‘Gold Rush’ and ‘Braeburn’, and quantitative comparison has been supported by two segment piecewise linear model fitting. Ester evolution during post-harvest ripening is strongly dependent on endogenous ethylene concentration levels. For ‘Golden Delicious’ and ‘Braeburn’, sesquiterpenes (alpha-farnesene) exhibited a fast response to ethylene emission followed by a rapid decline after the endogenous ethylene maximum peak. Carbonyl compounds displayed a different time evolution as compared to esters and terpenes and did not show any evident relationship with ethylene. Methanol and ethanol concentrations during the entire storage period did not change significantly. We show how multivariate analysis can efficiently handle the large datasets produced by PTR-ToF-MS and that the outcomes obtained are in agreement with the literature. The different volatile compounds could be simultaneously monitored with high time resolution, providing advantages over the more established techniques for the investigation of VOC dynamics in fruit post-harvest storage trials.

Keywords

PTR-ToF-MS Volatile compounds Apple (Malus × domesticaClimacteric post-harvest ripening 

References

  1. Aprea, E., Biasioli, F., Märk, T. D., & Gasperi, F. (2007). PTR-MS study of esters in water and water/ethanol solutions: fragmentation patterns and partition coefficients. International Journal of Mass Spectrometry, 262, 114–121.CrossRefGoogle Scholar
  2. Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and fruit ripening. Journal of Plant Growth Regulation, 26, 143–159.CrossRefGoogle Scholar
  3. Biasioli, F., Gasperi, F., Aprea, E., Colato, L., Boscaini, R., & Märk, T. D. (2003). Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatment of red orange juice—A case study. International Journal of Mass Spectrometry, 223–224, 343–353.CrossRefGoogle Scholar
  4. Biasioli, F., Gasperi, F., Yeretzian, C., & Märk, T. D. (2011a). PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends in Analytical Chemistry, 30, 968–977.CrossRefGoogle Scholar
  5. Biasioli, F., Yeretzian, C., Märk, T. D., Dewulf, J., & Van Langenhove, H. (2011b). Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. TrAC Trends in Analytical Chemistry, 30, 1003–1017.CrossRefGoogle Scholar
  6. Blake, R. S., Monks, P. S., & Ellis, A. M. (2009). Proton-transfer reaction mass spectrometry. Chemical Reviews, 109, 861–896.CrossRefGoogle Scholar
  7. Bleecker, A., & Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology, 16, 1–18.CrossRefGoogle Scholar
  8. Boschetti, A., Biasioli, F., van Opbergen, M., Warneke, C., Jordan, A., & Holzinger, R. (1999). PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit. Postharvest Biology and Technology, 17, 143–151.CrossRefGoogle Scholar
  9. Brackmann, A., Streif, J., & Bangerth, F. (1993). Relationship between a reduced aroma production and lipid metabolism of apples after long-term controlled atmosphere storage. Journal of American Society of Horticulture Science, 118, 243–247.Google Scholar
  10. Buhr, K., van Ruth, S., & Delahunty, C. (2002). Analysis of volatile flavour compounds by proton transfer reaction mass spectrometry: Fragmentation patterns and discrimination between isobaric and isomeric compounds. International Journal of Mass Spectrometry, 221(1), 1–7.CrossRefGoogle Scholar
  11. Cappellin, L., Biasioli, F., Granitto, P. B., Schuhfried, E., Soukoulis, C., Costa, F., et al. (2011). On data analysis in PTR-TOF-MS: from raw spectra to data mining. Sensors and Actuators B: Chemical, 155, 183–190.CrossRefGoogle Scholar
  12. Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M., Soukoulis, C., et al. (2012). On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Enviromental Science Technology. doi: 10.1021/es203985t. In press.
  13. Cappellin, L., Probst, M., Limtrakul, J., Biasioli, F., Schuhfried, E., Soukoulis, C., et al. (2010). Proton transfer reaction rate coefficients between H3O + and some sulphur compounds. International Journal of Mass Spectrometry, 295(1–2), 45–48.Google Scholar
  14. Costa, F., Sara, S., Van de Weg, W. E., Guerra, W., Cecchinel, M., Dallavia, J., et al. (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus × domestica Borkh). Euphytica, 141, 181–190.CrossRefGoogle Scholar
  15. Costa, F., Peace, C. P., Stella, S., Musacchi, S., Bazzani, M., Sansavini, S., et al. (2010). QTL dynamics for fruit firmness and softening around an ethylene dependent polygalacturonase gene in apple (Malus × domestica Borkh.). Journal of Experimental Botany, 61, 3029–3039.CrossRefGoogle Scholar
  16. de Vries, H. S. M., Wason, M. A. J., Harren, F. J. M., Woltering, E. J., van der Valk, H. C. P. M., & Reuss, J. (1996). Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photo deflection and photoacoustic techniques. Postharvest Biology and Technology, 8, 1–10.CrossRefGoogle Scholar
  17. Defilippi, B. G., Dandekar, A. M., & Kader, A. A. (2004). Impact of suppression of ethylene action or biosynthesis on flavor metabolites in apples (Malus domestica Borkh) fruits. Journal of Agricultural and Food Chemistry, 52, 5694–5701.CrossRefGoogle Scholar
  18. Defilippi, B. G., Dandekar, A. M., & Kader, A. A. (2005). Relationship of ethylene biosynthesis to volatile production, related enzymes and precursor availability in apple peel and flesh tissues. Journal of Agricultural and Food Chemistry, 53, 3133–3141.CrossRefGoogle Scholar
  19. Dixon, J., & Hewett, E. W. (2000). Factors affecting aroma/flavour volatile concentration: a review. New Zealand Journal of Crop Horticulture, 28, 155–173.CrossRefGoogle Scholar
  20. Dunemann, F., Ulrich, D., Malysheva-Otto, L., Weber, W. E., Longhi, S., Velasco, R., et al. (2012). Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Molecular Breeding, 29, 609–6250.CrossRefGoogle Scholar
  21. Echeverria, G., Graell, J., Lopez, M. L., & Lara, I. (2004). Volatile production, quality and aroma related enzyme activities during maturation of ‘Fuji’ apples. Postharvest Biology and Technology, 31, 217–227.CrossRefGoogle Scholar
  22. Ennis, C., Reynold, J., Keely, B. J., & Carpenter, L. J. (2005). A hollow cathode proton transfer reaction time of flight mass spectrometer. International Journal of Mass Spectrometry, 247, 72–80.CrossRefGoogle Scholar
  23. Fabris, A., Biasioli, F., Granitto, P., Aprea, E., Cappellin, L., Schuhfried, E., et al. (2010). PTR-TOF-MS and data mining methods for rapid characterization of agro-industrial samples: Influence of milk storage conditions on the volatile profile of Trentingrana cheese. Journal of Mass Spectrometry, 45, 1065–1074.CrossRefGoogle Scholar
  24. Fellman, J. K., Miller, T. W., Mattinson, D. S., & Mattheis, J. P. (2000). Factors that influence biosynthesis of volatile flavor compounds in apple fruits. Hortscience, 35, 1026–1032.Google Scholar
  25. Gasperi, F., Aprea, E., Biasioli, F., Carlin, S., Endrizzi, I., Pirretti, G., et al. (2009). Effects of supercritical CO2 and N2O pasteurization on the quality of fresh apple juice. Food Chemistry, 115, 129–136.CrossRefGoogle Scholar
  26. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology, 52, 725–749.CrossRefGoogle Scholar
  27. Golding, J. B., McGlasson, W. B., & Wyllie, S. G. (2001). Relationship between production of ethylene and a-farnesene in apples, and how it is influenced by the timing of diphenylamine treatment. Postharvest Biology and Technology, 21, 225–233.CrossRefGoogle Scholar
  28. Granitto, P. M., Biasioli, F., Aprea, E., Mott, D., Furlanello, C., Märk, T. D., et al. (2007). Sensors and Actuators B-Chemical, 121, 379–385.CrossRefGoogle Scholar
  29. Harren, F. J. M., Cotti, G., Oomens, J. L., & Hekkert, S. (2006). Photoacoustic spectroscopy in trace gas monitoring. In R. A. Meyers (Ed.), Encyclopaedia of analytical chemistry. Chichester: Wiley.Google Scholar
  30. Johnston, J. W., Gunaseelan, K., Pidakala, P., Wang, M., & Schaffer, R. J. (2009). Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. Journal of Experimental Botany, 60, 2689–2699.CrossRefGoogle Scholar
  31. Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Herbig, J., & Märk, L. (2009). An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR + SRI − MS). International Journal of Mass Spectrometry, 286, 32–38.CrossRefGoogle Scholar
  32. Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., et al. (2009). A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). International Journal of Mass Spectrometry, 286, 122–128.CrossRefGoogle Scholar
  33. Ju, Z., & Curry, E. A. (2000). Evidence that a-farnesene biosynthesis during fruit ripening is mediated by ethylene regulated gene expression in apples. Postharvest Biology and Technology, 19, 9–16.CrossRefGoogle Scholar
  34. Knighton, W. B., Fortner, E. C., Midey, A. J., Viggiano, A. A., Herndon, S. C., Wood, E. C., et al. (2009). HCN detection with a proton transfer reaction mass spectrometer. International Journal of Mass Spectrometry, 283(1–3), 112–121.CrossRefGoogle Scholar
  35. Lang, & Hübert, T. (in press). A colour ripeness indicator for apples. Food Bioprocess and Technology. doi:  10.1007/s11947-011-0694-4.
  36. Lara, I., Graell, J., Lopez, M. L., & Echeverria, G. (2006). Multivariate analysis of modification in biosynthesis of volatile compounds after CA storage of Fuji apples. Postharvest Biology and Technology, 39, 19–28.CrossRefGoogle Scholar
  37. Lindinger, W., Hansel, A., & Jordan, A. (1998). Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chemical Society Reviews, 27, 347–354.CrossRefGoogle Scholar
  38. Mattheis, J. P., Buchanan, D. A., & Fellman, J. K. (1998). Volatile compounds emitted by ‘Gala’ apples following dynamic atmosphere storage. Journal of American Society of Horticulture Science, 123, 426–432.Google Scholar
  39. Onishi, M., Inoue, M., Araki, T., Iwabuchi. H., Sagara, Y. (in press). A PTR-MS-based protocol for simulating bread aroma during mastication. Food Bioprocess and Technology. doi:  10.1007/s11947-010-0422-5.
  40. Pechous, S. W., & Whitaker, B. D. (2004). Cloning and functional expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta, 219, 84–94.CrossRefGoogle Scholar
  41. Rapparini, F., Baraldi, R., & Facini, O. (2001). Seasonal variation of monoterpene emission from Malus domestica and Prunus avium. Phytochemistry, 57, 681–687.CrossRefGoogle Scholar
  42. Rowan, D. D., Allen, J. M., Fielder, S., & Hunt, M. B. (1999). Biosynthesis of straight-chain ester volatiles in Red Delicious and Granny Smith apples using deuterium-labelled precursors. Journal of Agricultural and Food Chemistry, 47, 2553–2562.CrossRefGoogle Scholar
  43. Schaffer, R. J., Friel, E. N., Souleyre, E. J. F., Bolitho, K., Thodey, K., Ledger, S., et al. (2007). A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology, 144, 1899–1912.CrossRefGoogle Scholar
  44. Schuhfried, E., Biasioli, F., Aprea, E., Cappellin, L., Soukoulis, C., Ferrigno, A., et al. (2011). PTR-MS measurements and analysis of models for the calculation of Henry's law constants of monosulfides and disulfides. Chemosphere, 83, 311–317.CrossRefGoogle Scholar
  45. Song, J., & Bangerth, F. (1996). The effect of harvest date on aroma compound production from ‘Golden Delicious’ apple fruit and relationship to respiration and ethylene production. Postharvest Biology and Technology, 8, 259–269.CrossRefGoogle Scholar
  46. Song, J., & Bangerth, F. (2003). Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biology and Technology, 30(2), 113–121.CrossRefGoogle Scholar
  47. Song, J., & Forney, C. F. (2008). Flavour volatile production and regulation in fruit. Canadian Journal of Plant Science, 88, 537–550.CrossRefGoogle Scholar
  48. Soukoulis, C., Aprea. E., Biasioli, F., Cappellin, L., Schuhfried, E., Märk, T.D., et al. (in press). PTR-TOF-MS analysis for influence of milk base supplementation on texture and headspace concentration of endogenous volatile compounds in yogurt. Food Bioprocess and Technology. doi: 10.1007/s11947-010-0487-1.
  49. Tani, A., Hayward, S., & Hewitt, C. N. (2003). Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). International Journal of Mass Spectrometry, 223–224, 561–578.CrossRefGoogle Scholar
  50. Tanimoto, H., Aoki, N., Inamoto, S., Hirokama, J., & Sadamaga, Y. (2007). Development of a PTR-TOF-MS instrument for real-time measurement of volatile organic compounds in air. International Journal of Mass Spectrometry, 263, 1–11.CrossRefGoogle Scholar
  51. Wang, A., Yamakake, J., Kudo, H., Wakasa, Y., Hutsuyama, Y., Igarashi, M., et al. (2009). Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiology, 151, 391–399.CrossRefGoogle Scholar
  52. White, P. J. (2002). Recent advances in fruit development and ripening: an overview. Journal of Experimental Botany, 53(377), 1995–2000.CrossRefGoogle Scholar
  53. Young, J. C., Chu, C. L., Lu, G., & Zhu, H. (2005). Ester variability in apple varieties as determined by solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 52(26), 8086–8093.CrossRefGoogle Scholar
  54. Zini, E., Biasioli, F., Gasperi, F., Mott, D., Aprea, E., Märk, T. D., et al. (2005). QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica, 145, 269–279.CrossRefGoogle Scholar
  55. Zhu, Y., & Barritt, B. (2008). Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genetics & Genomes, 4(3), 555–562.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christos Soukoulis
    • 1
    • 3
  • Luca Cappellin
    • 1
    • 2
  • Eugenio Aprea
    • 1
  • Fabrizio Costa
    • 1
  • Roberto Viola
    • 1
  • Tilmann D. Märk
    • 2
  • Flavia Gasperi
    • 1
  • Franco Biasioli
    • 1
  1. 1.Research and Innovation CentreFoundation Edmund MachSan Michele all’ AdigeItaly
  2. 2.Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckInnsbruckAustria
  3. 3.Division of Food SciencesUniversity of NottinghamLoughboroughUK

Personalised recommendations