Food and Bioprocess Technology

, Volume 6, Issue 9, pp 2251–2260 | Cite as

A Viscoelastic Model for Honeys Using the Time–Temperature Superposition Principle (TTSP)

  • Mircea Oroian
  • Sonia Amariei
  • Isabel Escriche
  • Gheorghe Gutt
Original Paper


The viscoelastic parameters storage modulus (G′) and loss modulus (G″) were measured at different temperatures (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, and 40 °C) using oscillatory thermal analysis in order to obtain a viscoelastic model for honey. The model (a 4th grade polynomial equation) ascertains the applicability of the time–temperature superposition principle (TTSP) to the dynamic viscoelastic properties. This model, with a regression coefficient higher than 0.99, is suitable for all honeys irrespective their botanical origin (monofloral, polyfloral, or honeydew). The activation energy (relaxation“ΔHa” and retardation “ΔHb”), and the relaxation modulus fit the model proposed. The relaxation modulus has a 4th grade polynomial equation evolution at all temperatures. The moisture content influences all the rheological parameters.


Honey TTS principle Vertical shift Horizontal shift Relaxation modulus 


  1. Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38.CrossRefGoogle Scholar
  2. Aguilar, C., Rizva, S. S. H., Ramirez, J. F., & Inda, A. (1991). Rheological behavior of processed mustard. I: Effect of milling treatment. Journal of Texture Studies, 22, 59–84.CrossRefGoogle Scholar
  3. Ahmed, J., & Ramaswamy, H. (2006). Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 74(3), 376–382.CrossRefGoogle Scholar
  4. Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68.CrossRefGoogle Scholar
  5. Bogdanov S. (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland.Google Scholar
  6. Bueche, F. (1952). Viscosity self-diffusion and allied effect in solid polymers. Journal of Chemical Physics, 20, 1959–1964.CrossRefGoogle Scholar
  7. Castro-Vázquez, L., Díaz-Maroto, M. C., Torres, C., & Pérez-Coello, M. S. (2010). Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43(10), 2335–2340.CrossRefGoogle Scholar
  8. Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527.CrossRefGoogle Scholar
  9. Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14.CrossRefGoogle Scholar
  10. Dealy, J., & Plazek, D. (2009). Time-temperature superposition – a users guide. Rheological Bulletin, 78(2), 16–31.Google Scholar
  11. Doi, M., & Edwards. (1986). The theory of polymer dynamics, chap. 7. Oxford: Clarendon.Google Scholar
  12. Doublier, J. L., & Cuvelier, G. (1996). Gums and hydrocolloids: functional aspect. In A. C. Eliasson (Ed.), Carbohydrates in Food (pp. 283–318). New York: Marcel Dekker Inc.Google Scholar
  13. Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313.CrossRefGoogle Scholar
  14. Friedrich, C. (1991a). Relaxation and retardation functions of Maxwell model with fractional derivates. Rheological Acta, 30, 151–158.CrossRefGoogle Scholar
  15. Friedrich, C. (1991b). Relaxation functions of rheological constitutive equations with fractional derivates: thermodynamical constraints. In J. Casa-Vásquez & D. Jou (Eds.), Lectures Nodes in Physics, Rheological Modelling: Thermodynamical and Statistical Approaches, vol. 381 (pp. 321–330). Berlin: Springer Verlag.CrossRefGoogle Scholar
  16. Glöcke, W. G., & Nonnenmacher, T. F. (1994). Fractional relaxation and the time-temperature superposition principle. Rheological Acta, 33, 337–343.CrossRefGoogle Scholar
  17. Gomez-Diaz, D., Navaza, J. M., & Quintans-Riveiro, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404.CrossRefGoogle Scholar
  18. Guedes, R. M. (2011). A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polymer Testing, 30(3), 294–302.CrossRefGoogle Scholar
  19. Heymans, H. (2003). Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition. Signal Processing, 83, 2345–2357.CrossRefGoogle Scholar
  20. Heymans, N., & Bauwens, J. C. (1994). Fractal rheolgical models and fractional differential equations for viscoelastical behavior. Rheological Acta, 33, 210–219.CrossRefGoogle Scholar
  21. Hong, S. I., Kim, Y. S., Choi, D. W., & Pyun, Y. R. (1992). Compressive creep behavior of rice starch gel. Korean Journal of Food Science & Technology, 24, 165–170.Google Scholar
  22. Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168.CrossRefGoogle Scholar
  23. Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49.CrossRefGoogle Scholar
  24. Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94.Google Scholar
  25. Katsuta, K., & Kinsella, J. E. (1990). Effects of temperature on viscoelastic properties and activation energies of whey protein gels. Journal of Food Science, 55(5), 1296–1302.CrossRefGoogle Scholar
  26. Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117.CrossRefGoogle Scholar
  27. Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21.CrossRefGoogle Scholar
  28. Lizarraga, M. S., Piante Vicin, D., González, R., Rubiolo, A., & Santiago, L. G. (2006). Rheological behaviour of whey protein concentrate and λ-carrageenan aqueous mixtures. Food Hydrocolloids, 20, 740–748.CrossRefGoogle Scholar
  29. Lusby, P., Coombes, A., & Wilkinson, J. (2005). Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Researchm, 36(5), 464–467.CrossRefGoogle Scholar
  30. Menjivar, J. A., & Faridi, H. (1994). Rheological properties of cookie and cracker doughs. In H. Faridi (Ed.), The Science of Cookie and Craker Production (pp. 283–322). New York: Chapman & Hall.Google Scholar
  31. Morris, E. R. (1989). Polysaccharide solution properties: origin, rheological characterization and implications for food systems. In R. P. Millan, J. N. BeMiller, & R. Chandrasekavan (Eds.), Frontiers in Carbohydrate Research – 1: Food Aplication (pp. 132–163). New York: Elsevier Applied Science Pub.Google Scholar
  32. Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552.Google Scholar
  33. Oroian, M., Amariei, S., Escriche, I., & Gutt, G. (2011). Rheological aspects of Spanish honeys. Food and Bioprocess Technology. doi:10.1007/s11947-011-0730-4.
  34. Ozdemir, C., Dagdemir, E., Ozdemir, S., & Sagdic, O. (2009). The effects of using alternative sweeteners to sucrose on ice cream quality. Journal of Food Quality, 31(4), 415–428.CrossRefGoogle Scholar
  35. Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23, 415–425.CrossRefGoogle Scholar
  36. Robson, V., Yorke, J., Sen, R., Lowe, D., & Rogers, S. (2011). Randomised controlled feasibility trial on the use of medical grade honey following microvascular free tissue transfer to reduce the incidence of wound infection. British Journal of Oral and Maxillofacial Surgery. doi:10.1016/j.bjoms.2011.07.014.
  37. Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280.CrossRefGoogle Scholar
  38. Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: Características e identificación mediante el análisis del polen. Madrid: Mundi-Prensa Publishing.Google Scholar
  39. Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113.CrossRefGoogle Scholar
  40. Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75.CrossRefGoogle Scholar
  41. Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309.CrossRefGoogle Scholar
  42. Stomfay-Stitz, J. (1960). Honey: an ancient yet modern medicine. The Science Counsellor, 23, 110–125.Google Scholar
  43. Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3706.CrossRefGoogle Scholar
  44. Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537.CrossRefGoogle Scholar
  45. Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377.CrossRefGoogle Scholar
  46. Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463.CrossRefGoogle Scholar
  47. Yoon, W. B., Park, J. W., Kim, B. Y., & Kim, M. H. (1998). Dynamic properties of surimi-based seafood product as a function of moisture content. Food Engineering Progress, 2, 23–29.Google Scholar
  48. Zumla, A., & Lulat, A. (1989). Honey—a remedy rediscovered. Journal of the Royal Society of Medicine, 82, 384–385.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mircea Oroian
    • 1
  • Sonia Amariei
    • 1
  • Isabel Escriche
    • 2
  • Gheorghe Gutt
    • 1
  1. 1.Faculty of Food EngineeringStefan cel Mare University of SuceavaSuceavaRomania
  2. 2.Institute of Food Engineering for Development (IUIAD), Food Technology Department (DTA)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations