Food and Bioprocess Technology

, Volume 6, Issue 3, pp 806–817 | Cite as

Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods

  • Ibtissem Hamrouni-SellamiEmail author
  • Fatma Zohra Rahali
  • Iness Bettaieb Rebey
  • Soumaya Bourgou
  • Ferid Limam
  • Brahim Marzouk
Original Paper


In the current study, we determined the effects of seven drying methods on total phenolics, flavonoids, individual phenolics, and antioxidant activity of the methanol extract of Salvia officinalis L. As compared with total phenolic content (TPC) of fresh plants, results showed that the highest TPC was recorded in plants dried by microwave (MW) at a power of 800 W/30 g of fresh plant and was 4.2 times higher than that of fresh plants whereas the lowest content was found in the case of plants dried by far-infrared (FIR) at 45 °C. The analysis of the different extracts by RP-HPLC showed a predominance of phenolic acids particularly in fresh plants and those dried by MW (600 W/30 g of fresh plant) whereas flavonoids predominate in the case of plants dried by FIR (65 °C). The assessment of the radical scavenging activity (RSA) against the stable radical 1,1-diphenyl-1-picrylhydrazyl (DPPH) showed an increase in the scavenging effect particularly in MW (800 W/30 g of fresh plant) dried plants with an IC50 = 13.49 μg ml−1 (IC50 is the concentration required to cause 50 % DPPH inhibition). The complementary assessment of the RSA using the β-carotene/linoleic acid system showed an increase of this activity for all extracts and particularly for the extract derived from MW (600 W/30 g of fresh plant) dried plants as compared to fresh ones. Finally, all the plant extracts showed moderate reducing power as assessed by the ferric-reducing antioxidant potential. These results suggested that MW drying could be applied to retain phenolic contents and to enhance antioxidant activity of sage plant materials.


Salvia officinalis L. Drying Microwave Far-infrared Phenolics Flavonoids Antioxidant activity 



We thank Dr. Mihoubi Daoued (Energetic and Thermal Processing Laboratory, CRTE, B.P. 95, 2050 Hammam-Lif, Tunisia) for the technical support of infrared drying experiments and for his helpful recommendations.


  1. Annamalai, A. (2011). Effect of drying treatment on the contents of antioxidants in Cardiospermum halicacabum Linn. International Journal of Pharmaceutical and Biological Sciences, 2(1), 304–313.Google Scholar
  2. Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237–1241.CrossRefGoogle Scholar
  3. Bettaieb, I., Bourgou, S., Aidi Wannes, W., Hamrouni, I., Limam, F., & Marzouk, B. (2010a). Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). Journal of Agricultural and Food Chemistry, 58(19), 10410–10418.CrossRefGoogle Scholar
  4. Bettaieb, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., & Marzouk, B. (2010b). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physilogia Plantarum, 33, 1103–1111.CrossRefGoogle Scholar
  5. Capecka, E., Marecczek, A., & Leja, M. (2005). Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93, 223–226.CrossRefGoogle Scholar
  6. Caro, A. D., Piga, A. P., Pinna, I., Fenu, P. M., & Agabbio, M. (2004). Effect of drying conditions and storage period on polyphenolic content, antioxidant capacity, and ascorbic acid of prunes. Journal of Agriculture and Food Chemistry, 52, 4780–4784.CrossRefGoogle Scholar
  7. Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166–172.CrossRefGoogle Scholar
  8. Chang, C. H., Lin, H. Y., Chang, C. Y., & Liu, Y. C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77, 478–485.CrossRefGoogle Scholar
  9. Chantaro, P., Devahastin, S., & Chiewchan, N. (2008). Production of antioxidant high dietary fiber powder from carrot peels. Lebensmittel Wissenschaft und Technologie—Food Science and Technology, 41, 1987–1994.CrossRefGoogle Scholar
  10. Chawla, S. P., Ramesh, C., & Arun, S. (2009). Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins. Food Chemistry, 116, 122–128.CrossRefGoogle Scholar
  11. Choi, Y., Lee, S. M., Chun, J., Lee, H. B., & Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of shitake (Lentinus edodes) mushroom. Food Chemistry, 99, 381–387.CrossRefGoogle Scholar
  12. Cuvelier, M. E., Richard, H., & Berset, C. (1996). Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. Journal of the American Oil Chemists’ Society, 73, 645–652.CrossRefGoogle Scholar
  13. Dewanto, V., Wu, X., Adom, K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010–3014.CrossRefGoogle Scholar
  14. Duh, P. D. (1998). Antioxidant activity of Budrock (Arctium laooa Linn.) its scavenging effect on free radical and active oxygen. Journal of American Oil Chemist Society, 75, 455–461.CrossRefGoogle Scholar
  15. Eskilsson, S. C., & Bjorklund, E. (2000). Analytical-scale microwave-assisted extraction. Journal of Chromatography. A, 902, 227–250.CrossRefGoogle Scholar
  16. Gordon, M. H. (1990). The mechanism of antioxidant action in vitro. In B. J. F. Hudson (Ed.), Food antioxidants (pp. 1–18). London: Elsevier Science.CrossRefGoogle Scholar
  17. Hanato, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chemical and Pharmeutical Bulletin, 36, 1090–1097.Google Scholar
  18. Hohmann, J., Zupkό, I., Rédei, D., Csányi, M., Falkay, G., Máthé, I., & Janicsák, G. (1999). Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation. Planta Medica, 65, 576–578.CrossRefGoogle Scholar
  19. Inchuen, S., Narkrugsa, W., & Pornchaloempong, P. (2010). Effect of drying methods on chemical composition, color and antioxidant properties of Thai red curry powder. Kasetsart Journal of Natural Science, 44, 142–151.Google Scholar
  20. Inoue, S., & Kabaya, M. (1989). Biological activities caused by far infrared radiation. International Journal of Biometeorology, 33, 145–150.CrossRefGoogle Scholar
  21. Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73, 285–290.CrossRefGoogle Scholar
  22. Jeong, S. M., Kim, S. Y., Kim, D. R., Jo, S. C., Nam, K. C., Ahn, D. U., & Lee, S. C. (2004a). Effect of heat treatment on the antioxidant activity of extracts from citrus peels. Journal of Agricultural and Food Chemistry, 52, 3389–3393.CrossRefGoogle Scholar
  23. Jeong, S. M., Kim, S. Y., Kim, D. R., Nam, K. C., Ahn, D. U., & Lee, S. C. (2004b). Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. Journal of Food Science, 69, 377–381.CrossRefGoogle Scholar
  24. Kammoun Bejar, A., Kechaou, N., & Boudhrioua Mihoubi, N. (2011). Effect of microwave treatment on physical and functional properties of orange (Citrus Sinensis) peel and leaves. Food Processing and Technology, 2, 109. doi: 10.4172/2157-7110.1000109.Google Scholar
  25. Koleva, I. I., Teris, A. B., Jozef, P. H., Linssen, A. G., & Lyuba, N. E. (2002). Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis, 13, 8–17.CrossRefGoogle Scholar
  26. Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry, 85, 633–640.CrossRefGoogle Scholar
  27. Kuljarachanan, T., Devahastin, S., & Chiewchan, N. (2009). Evolution of antioxidant compounds in lime residues during drying. Food Chemistry, 113, 944–949.CrossRefGoogle Scholar
  28. Kumaran, A., & Karunakaran, R. J. (2006). Activity guided isolation and identification of free radical scavenging components from an aqueous extract of Coleus aromaticus. Food Chemistry, 100, 356–361.CrossRefGoogle Scholar
  29. Lee, S. C., Kim, J. H., Jeong, S. M., Kim, D. R., Ha, J. U., Nam, K. C., & Ahn, D. U. (2003). Effect of far-infrared radiation on the antioxidant activity of rice hulls. Journal of Agricultural and Food Chemistry, 51, 4400–4403.CrossRefGoogle Scholar
  30. Lee, S. C., Jeong, S. M., & Kim, S. Y. (2006). Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. Food Chemistry, 94, 489–493.CrossRefGoogle Scholar
  31. Lee, S. C., Kim, J. W., Ishida, Y., Hasegawa, T., & Kitagawa, K. (2007). Application of far-infrared and subcritical water for recovering antioxidant compounds from rice hulls. Proceedings of International Symposium on Eco Topia Science, ISETS07. Google Scholar
  32. Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. Lebensmittel Wissenschaft und Technologie—Food Science and Technology, 40, 1664–1669.CrossRefGoogle Scholar
  33. López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O’Neil. Food and Bioprocess Technology, 3(5), 772–777.CrossRefGoogle Scholar
  34. Madsen, H. L., Bertelsen, G., & Skibsted, L. H. (1997). Antioxidative activity of spices and spice extracts. In S. J. Risch & C. T. Ho (Eds.), Spices, flavour chemistry and antioxidant properties (pp. 176–187). Washington, DC: American chemical Society.CrossRefGoogle Scholar
  35. Mao, L. C., Pan, X., Que, F., & Fang, X. H. (2006). Antioxidant properties of water and ethanol extracts from hot air-dried and freeze dried daylily flowers. European Food Research and Technology, 222, 236–241.CrossRefGoogle Scholar
  36. Masaki, H., Sakaki, S., Atsumi, T., & Sakurai, H. (1995). Active-oxygen scavenging activity of plant extracts. Biological and Pharmaceutical Bulletin, 18(1), 162–166.CrossRefGoogle Scholar
  37. Mongpreneet, S., Abe, T., & Tsurusaki, T. (2002). Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 55, 147–156.CrossRefGoogle Scholar
  38. Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91, 3–20.CrossRefGoogle Scholar
  39. Nicoli, M. C., Anese, M., & Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruits and vegetables. Trends in Food Science and Technology, 10, 94–100.CrossRefGoogle Scholar
  40. Niwa, Y., Kanoh, T., Kasama, T., & Neigishi, M. (1988). Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system. Drugs under Experimental and Clinical Research, 14, 361–372.Google Scholar
  41. Omwa, M., & Hu, Q. (2010). Antioxidant activity in barley (Hordeum vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology. Journal of Food Science, 75(1), 66–73.CrossRefGoogle Scholar
  42. Ould Ahmedou, S. A., Rouaud, O., & Havet, M. (2008). Assessment of the electrodynamic drying process. Food and Bioprocess Technology, 2(3), 240–247.CrossRefGoogle Scholar
  43. Oyaizu, M. (1986). Studies on products of the browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44, 307–315.CrossRefGoogle Scholar
  44. Park, Y. S., Jung, S. T., Kang, S. G., Licon, E. D., Ayala, A. L. M., & Tapia, M. S. (2006). Drying of persimmons (Diospyros kaki L.) and the following changes in the studied bioactive compounds and the total radical scavenging activities. Lebensmittel Wissenschaft und Technologie—Food Science and Technology, 39, 748–755.CrossRefGoogle Scholar
  45. Pokorny, J. (1991). Natural antioxidants for food use. Trends in Food Science and Technology, 9, 223–227.CrossRefGoogle Scholar
  46. Sathishkumar, R., Lakshmi, P. T. V., & Annamalai, A. (2009). Effect of drying treatment on the content of antioxidants in Enicostemma littorale Blume. Research Journal of Medicinal Plant, 3(3), 93–101.CrossRefGoogle Scholar
  47. Shimada, K., Fujikawa, K., & Nakamura, T. (1992). Anti-oxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40, 945–948.CrossRefGoogle Scholar
  48. Soong, Y. Y., & Barlow, P. J. (2006). Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chemistry, 97, 524–530.CrossRefGoogle Scholar
  49. Ternes, W., & Schwarz, K. (1995). Antioxidant constituents of Rosmarinus officinalis and Salvia officinalis IV. Determination of carnosic acid in different foodstuffs. Zeitschrift für Lebensmittel-Untersuchung und—Forschung A, 201, 548–550.CrossRefGoogle Scholar
  50. Tosun, M., Ercisli, S., Sengul, M., Ozer, H., Polat, T., & Ozturk, E. (2009). Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biological Research, 42, 175–181.CrossRefGoogle Scholar
  51. Vassilev, A., Berova, M., & Zlatev, Z. (1998). Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum, 41(4), 601–606.CrossRefGoogle Scholar
  52. Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. Journal of Agricultural and Food Chemistry, 49, 5315–5321.CrossRefGoogle Scholar
  53. Wang, J., & Sheng, K. (2006). Far-infrared and microwave drying of peach. Lebensmittel Wissenschaft und Technologie—Food Science and Technology, 39, 247–255.CrossRefGoogle Scholar
  54. Xing, R., Liu, S., Guo, Z., Yu, H., & Wang, C. (2005). Relevance of molecular weight of chitosan and its derivatives and their antioxidant activities in vitro. Bioorganic & Medicinal Chemistry, 13, 1573–1577.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ibtissem Hamrouni-Sellami
    • 1
    Email author
  • Fatma Zohra Rahali
    • 1
  • Iness Bettaieb Rebey
    • 1
  • Soumaya Bourgou
    • 1
  • Ferid Limam
    • 1
  • Brahim Marzouk
    • 1
  1. 1.Laboratory of Bioactive SubstancesCenter of Biotechnology of the Techno pole Borj-CedriaHammam-LifTunisia

Personalised recommendations