Food and Bioprocess Technology

, Volume 6, Issue 8, pp 2135–2149 | Cite as

Innovative Cooking Techniques for Improving the Overall Quality of a Kailan-Hybrid Broccoli

  • Ginés B. Martínez-Hernández
  • Francisco Artés-Hernández
  • Franciane Colares-Souza
  • Perla A. Gómez
  • Presentación García-Gómez
  • Francisco ArtésEmail author
Original Paper


The microbial, physical, sensory and nutritional quality of boiled (vacuum and conventional), steamed, pressure cooked, sous vide, microwaved (sous vide and conventional), deep-fried (vacuum and conventional) and grilled kailan-hybrid broccoli (Bimi®) after cooking was studied. Sous vide microwaving greatly decreased microbial counts, achieving very low psychrophilic and enterobacteria counts (1.1 and 0.2 log CFU g−1, respectively). Vacuum boiling and sous vide reduced the stem broccoli firmness by approximately 54–58 %, reaching a pleasant and moderate softening. Sous vide, grilling and steaming induced the lowest stem colour changes. Generally, all cooking treatments showed a good overall sensory quality. The total phenolic content (1,148 mg CAE kg−1 fw) usually increased after cooking, with microwave and grilled treatments registering the highest increases up to 2-fold. Commonly, the total antioxidant capacity (296.6 mg AAE kg−1 fw) increased after cooking by sous vide, microwaving and frying treatments registering the highest increments, by approximately 3.6-fold. Generally, the cooking process reduced the initial vitamin C content, with vacuum and conventional boiling showing the lowest and highest losses with 27 and 62 %, respectively, while vacuum deep frying preserved the initial value (1,737 mg kg−1 fw). As a main conclusion, the studied grilling and vacuum-based cooking treatments resulted in better microbial quality, colour, stem firmness and sensory quality than the remaining ones. This maintained or even improved the total antioxidant content of the new kailan-hybrid broccoli studied.


Brassica oleracea Italica group × Alboglabra group Vacuum-cooking Microwave Grilled Stem firmness Health-promoting compounds 



The authors are grateful to Sakata Seeds Ibérica S.L.U. for providing financial support and to Fundación Séneca de la Region de Murcia for a grant to G.B. Martínez-Hernández. Thanks are also due to Centro Tecnológico Nacional de la Conserva y la Alimentación and to Centro de Cualificación Turística for their technical support and use of equipments.


  1. Ahn, H. J., Kim, J. H., Kim, J. K., Kim, D. H., Yook, H. S., & Byun, M. W. (2005). Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.). Food Chemistry, 89(4), 589–597.CrossRefGoogle Scholar
  2. American Society for Testing and Materials. (1986). In Eggertj & Zook (Eds.), Physical requirements guidelines for sensory evaluation. Philadelphia: ASTM Special Technical Publication.Google Scholar
  3. Arroyo, G., Sanz, P. D., & Préstamo, G. (1999). Response to high-pressure, low-temperature treatment in vegetables: Determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. Journal of Applied Microbiology, 86(3), 544–556.CrossRefGoogle Scholar
  4. Artés, F., Vallejo, F., & Martínez, J. A. (2001). Quality of broccoli as influenced by film wrapping during shipment. European Food Research and Technology, 213(6), 480–483.CrossRefGoogle Scholar
  5. Artés, F., Gómez, P. A., Aguayo, A., Escalona, V. H., & Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51(3), 287–296.CrossRefGoogle Scholar
  6. Bett, K. L. (2002). Evaluating sensory quality of fresh-cut fruits and vegetables. In Lamikanra (Ed.), Fresh-cut fruits and vegetables science, technology, and market (pp. 427–438). Boca Raton: CRC.Google Scholar
  7. Bidchol, A. M., Wilfred, A., Abhijna, P., & Harish, R. (2011). Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food and Bioprocess Technology, 4(7), 1137–1143.CrossRefGoogle Scholar
  8. Braconnier, A., Broussolle, V., Dargaignaratz, C., Nguyen-The, C., & Carlin, F. (2003). Growth and germination of proteolytic Clostridium botulinum in vegetable-based media. Journal of Food Protection, 66(5), 833–839.Google Scholar
  9. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of the free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.CrossRefGoogle Scholar
  10. Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Van Camp, J. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649–656.CrossRefGoogle Scholar
  11. Carlin, F., Girardin, H., Peck, M. W., Stringer, S. C., Barker, G. C., Martínez, A., Fernández, A., Fernández, P., Waites, W. M., Movahedi, S., van Leusden, F., Nauta, M., Moezelaar, R., Del Torre, M., & Litman, S. (2000). Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: A FAIR collaborative project. International Journal of Food Microbiology, 60(2–3), 117–135.CrossRefGoogle Scholar
  12. Chuah, A. M., Lee, Y. C., Yamaguchi, T., Takamura, H., Yin, L. J., & Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111(1), 20–28.CrossRefGoogle Scholar
  13. Church, I. J., & Parsons, A. L. (1993). Review: Sous vide cook-chill technology. International Journal of Food Science and Technology, 28(6), 563–574.Google Scholar
  14. Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2011). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: Thermosonication process optimisation and microstructure evaluation. Food and Bioprocess Technology, 4, 1197–1204.CrossRefGoogle Scholar
  15. Da Silva, P., & Moreira, R. G. (2008). Vacuum frying of high-quality fruit and vegetable-based snacks. LWT- Food Science and Technology, 41(10), 1758–1767.CrossRefGoogle Scholar
  16. Davey, M. W., Montagu, M. V., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J. J., Strain, J. J., Favell, D., & Fletcher, J. (2000). Plant L-ascorbic: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860.CrossRefGoogle Scholar
  17. Dewanto, V., & Wu, X. (2002). Processed sweet corn has higher antioxidant activity. Journal of Agricultural and Food Chemistry, 50(17), 4959–4964.CrossRefGoogle Scholar
  18. Dewanto, V., Wu, X., Adom, K. K., & Liu, H. R. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014.CrossRefGoogle Scholar
  19. Dini, I., Tenore, G. C., & Dini, A. (2010). Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT- Food Science and Technology, 43(3), 447–451.CrossRefGoogle Scholar
  20. Galgano, F., Favati, F., Caruso, M., Pietrafesa, A., & Natella, S. (2007). The influence of processing and preservation on the retention of health-promoting compounds in broccoli. Journal of Food Science, 72(2), 130–135.CrossRefGoogle Scholar
  21. Gormley, R., & Tansey, F. (2012). Sous vide and cook-chill processing. In Sun (Ed.), Handbook of food safety engineering (p. 477). New York: Wiley.Google Scholar
  22. Harrison, M. K., & Harris, N. D. (1985). Effects of processing treatments on recovery of capsaicin in jalapeno peppers. Journal of Food Science, 50(6), 1764–1765.CrossRefGoogle Scholar
  23. ISO 8586–1. (1993). Sensory analysis—General guidance for selection, training and monitoring of assessors. Geneva: ISO.Google Scholar
  24. Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2009). Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. Journal of Food Science, 74(9), 107–113.CrossRefGoogle Scholar
  25. Jeffery, E. H., Brown, A. F., Kurilich, A. C., Keck, A. S., Matusheski, N., Klein, B. P., & Juvik, J. A. (2003). Variation in content of bioactive components in broccoli. Journal of Food Composition and Analysis, 16(3), 323–330.CrossRefGoogle Scholar
  26. Jiménez-Monreal, A. M., García-Diz, L., Martínez-Tomé, M., Mariscal, M., & Murcia, M. A. (2009). Influence of cooking methods on antioxidant activity of vegetables. Journal of Food Science, 74(3), 97–103.CrossRefGoogle Scholar
  27. Johnson, J. M., & Driskell, J. (1987). Vitamin retention and sensory evaluation of selected foods prepared by boiling, boiling-in-bag, and steaming methods. Home Economics Research Journal, 16(2), 136–142.CrossRefGoogle Scholar
  28. Kala, A., & Prakash, J. (2004). Nutrient composition and sensory profile of different cooked green leafy vegetables. International Journal of Food Properties, 7(3), 659–669.CrossRefGoogle Scholar
  29. Kalogeropoulos, N., Mylona, A., Chiou, A., Ioannou, M. S., & Andrikopoulos, N. K. (2007). Retention and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after shallow frying of vegetables in virgin olive oil. LWT- Food Science and Technology, 40(6), 1008–1017.CrossRefGoogle Scholar
  30. Kurilich, A. C., Jeffery, E. H., Juvik, J. A., Wallig, M. A., & Klein, B. P. (2002). Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay. Journal of Agricultural and Food Chemistry, 50(18), 5053–5057.CrossRefGoogle Scholar
  31. Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220.CrossRefGoogle Scholar
  32. López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O’Neil. Food and Bioprocess Technology, 3(5), 772–777.CrossRefGoogle Scholar
  33. López-Berenguer, C., Carvajal, M., Moreno, D. A., & García-Viguera, C. (2007). Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. Journal of Agriculture and Food Chemistry, 55(24), 10001–10007.CrossRefGoogle Scholar
  34. Mamatha, B. S., Arunkumar, R., & Baskaran, V. (2012). Effect of processing on major carotenoid levels in corn (Zea mays) and selected vegetables: Bioavailability of lutein and zeaxanthin from processed corn in mice. Food and Bioprocess Technology, 4, 1355–1363. doi: 10.1007/s11947-010-0403-8.CrossRefGoogle Scholar
  35. Martínez-Hernández, G. B., Gómez, P. A., Artés, F., & Artés-Hernández, F. (2011). Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi® broccoli. Postharvest Biology and Technology, 62(3), 327–337.CrossRefGoogle Scholar
  36. Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, M. (2008). Effects of different cooking methods on nutritional and physicochemical of selected vegetables. Journal of Agriculture and Food Chemistry, 56(1), 139–147.CrossRefGoogle Scholar
  37. Moreno, D. A., Carvajal, M., López-Berenguer, C., & García-Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal Pharmacology Biomedical Analytical, 41(5), 1508–1522.CrossRefGoogle Scholar
  38. Moreno, D. A., López-Berenguer, C., & García-Viguera, C. (2007). Effects of stir-fry cooking with different edible oils on the phytochemical composition of broccoli. Journal of Food Science, 72(1), 64–68.CrossRefGoogle Scholar
  39. Munyaka, A. W., Oey, I., Van Loey, A., & Hendrickx, M. (2010). Application of thermal inactivation of enzymes during vitamin C analysis to study the influence of acidification, crushing and blanching on vitamin C stability in broccoli (Brassica oleracea L var. italica). Food Chemistry, 120(2), 591–598.CrossRefGoogle Scholar
  40. Nunes, Y., & Moreira, R. G. (2009). Effect of osmotic dehydration and vacuum-frying parameters to produce high-quality mango chips. Journal of Food Science, 74(7), 355–362.CrossRefGoogle Scholar
  41. Nunn, M. D., Giraud, D. W., Parkhurst, A. M., Hamouz, F. L., & Driskell, J. A. (2006). Effects of cooking methods on sensory qualities and carotenoid retention in selected vegetables. Journal of Food Quality, 29(5), 445–457.CrossRefGoogle Scholar
  42. Ornelas-Paz, J. J., Martínez-Burrola, J. M., Ruiz-Cruz, S., Santana-Rodríguez, V., Ibarra-Junquera, V., Olivas, G. I., & Pérez-Martínez, J. D. (2010). Effect of cooking on the capsaicinoids and phenolics contents of Mexican peppers. Food Chemistry, 119(4), 1619–1625.CrossRefGoogle Scholar
  43. Pellegrini, N., Chiavaro, E., Gardana, C., Mazzeo, T., Contino, D., Gallo, M., Riso, P., Fogliano, V., & Porrini, M. (2010). Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. Journal of Agricultural and Food Chemistry, 58, 4310–4321.Google Scholar
  44. Pérez-Tinoco, M. R., Pérez, A., Salgado-Cervantes, M., Reynes, M., & Vaillant, F. (2008). Effect of vacuum frying on main physicochemical and nutritional quality parameters of pineapple chips. Journal of the Science of Food and Agriculture, 88(6), 945–953.CrossRefGoogle Scholar
  45. Petersen, M. A. (1993). Influence of sous vide processing, steaming and boiling on vitamin retention and sensory quality in broccoli florets. Lebensmittel Untersuchung und Forschung, 197(4), 375–380.CrossRefGoogle Scholar
  46. Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT- Food Science and Technology, 40(1), 1–11.CrossRefGoogle Scholar
  47. Regulation EC 1441/2007. (2007). Commission regulation on microbiological criteria for foodstuffs. Official Journal of the European Union, 32, 12–29.Google Scholar
  48. Ren, K., Tu, K., Pan, L., & Chen, Y. (2006). Kinetic modeling of broccoli color changes during chilled storage. Journal of Food Processing and Preservation, 30(2), 180–193.CrossRefGoogle Scholar
  49. Rojas, A. M., & Gershenson, L. N. (1997). Ascorbic acid destruction in sweet aqueous model systems. Lebensmittel-Wissenschaft und Technologie, 30(6), 567–572.Google Scholar
  50. Roy, M. K., Juneja, L. R., Isobe, S., & Tsushida, T. (2009). Steam processed broccoli (Brassica oleracea) has higher antioxidant activity in chemical and cellular assay systems. Food Chemistry, 114(1), 263–269.CrossRefGoogle Scholar
  51. Rungapamestry, V., Duncan, A. J., Fuller, Z., & Ratcliffe, B. (2008). Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. European Food Research and Technology, 227(1), 37–44.CrossRefGoogle Scholar
  52. Sanjuan, N., Benedito, J., Clemente, G., & Mulet, A. (2000). The influence of blanching pretreatments on the quality of dehydrated broccoli stems. Food Science and Technology International, 6(3), 227–234.CrossRefGoogle Scholar
  53. Schnepf, M., & Driskell, J. (1994). Sensory attributes and nutrient retention in selected vegetables prepared by conventional and microwave methods. Journal of Food Quality, 17(2), 87–99.CrossRefGoogle Scholar
  54. Schweiggert, U., Schieber, A., & Carle, R. (2006). Effects of blanching and storage on capsaicinoid stability and peroxidase activity of hot chili peppers (Capsicum frutescens L.). Innovative Food Science & Emerging Technologies, 7(3), 217–224.CrossRefGoogle Scholar
  55. Sebastiá, C., Soriano, J. M., Iranzo, M., & Rico, H. (2010). Microbiological quality of sous vide cook–chill preserved food at different shelf life. Journal of Food Processing Preservation, 34(6), 964–974.CrossRefGoogle Scholar
  56. Shyu, S., Hau, L., & Hwang, S. (1998). Effect of vacuum frying on the antioxidant stability of oils. Journal of the American Oil Chemists' Society, 75(10), 1393–1398.CrossRefGoogle Scholar
  57. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.Google Scholar
  58. Sous Vide Advisory Committee. (1991). Code of practice for sous vide catering system. Tetbury: SVAC.Google Scholar
  59. Stea, T. H., Johansson, M., Jägerstad, M., & FrØlich, W. (2006). Retention of folates in cooked, stored and reheated peas, broccoli and potatoes for use in modern large-scale service systems. Food Chemistry, 101(3), 1095–1107.CrossRefGoogle Scholar
  60. Sun, T., Powers, J., & Tang, J. (2007). Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chemistry, 105(1), 101–106.CrossRefGoogle Scholar
  61. Szymanek, M. (2011). Effects of blanching on some physical properties and processing recovery of sweet corn cobs. Food and Bioprocess Technology, 4(7), 1164–1171.CrossRefGoogle Scholar
  62. Tomás-Callejas, A., Martínez-Hernández, G. B., Artés, F., & Artés-Hernández, F. (2011). Neutral and acidic electrolyzed water as emergent sanitizers for fresh-cut mizuna baby leaves. Postharvest Biology and Technology, 59(3), 298–306.CrossRefGoogle Scholar
  63. Turkmen, N., Ferda, S., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713–718.CrossRefGoogle Scholar
  64. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—A review. Food and Bioprocess Technology, 3(2), 161–171.CrossRefGoogle Scholar
  65. Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2002). Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. European Food Research and Technology, 215(4), 310–316.CrossRefGoogle Scholar
  66. Vlok, N. H. (1998). Effects of heat processing on product quality of sous-vide broccoli packs. PhD Thesis. Department of Food Technology & Manufacture, Cape Peninsula University of Technology, Cape Town, South Africa.Google Scholar
  67. Warthesen, J. J., Vickers, Z. M., Whitney-West, S., & Wolf, I. D. (1984). Cookery methods for vegetables: Influence on sensory quality, nutrient retention, and energy consumption. Home Economics Research Journal, 13(1), 61–79.CrossRefGoogle Scholar
  68. Werlein, H. D. (1998). Comparison of the quality of sous-vide and conventionally processed carrots. European Food Research and Technology, 207(4), 311–315.Google Scholar
  69. Wolosiak, R., Worobiej, E., Piecyk, M., Druzynska, B., Nowak, D., & Lewicki, P. P. (2010). Activities of amine and phenolic antioxidants and their changes in broad beans (Vicia faba) after freezing and steam cooking. International Journal of Food Science and Technology, 45(1), 29–37.Google Scholar
  70. Yamaguchi, T., Mizobuchi, T., Kajikawa, R., Kawashima, H., Miyabe, F., Terao, J., Takamura, H., & Matoba, T. (2001). Radical-scavenging activity of vegetables and the effect of cooking on their activity. Food Science and Technology Research, 7(3), 250–257.CrossRefGoogle Scholar
  71. Young, C. T., & Schadel, W. E. (1993). A comparison of the effects of oven roasting and oil cooking on the microstructure of peanut (Arachis hypogaea L. cv. Florigiant) cotyledon. Food Structure, 12(1), 59–66.Google Scholar
  72. Zapata, S., & Dufour, J. P. (1992). Ascorbic, dehydroascorbic and isoascorbic and simultaneous determinations by reverse phase ion interaction HPLC. Journal of Food Science, 57(2), 506–511.CrossRefGoogle Scholar
  73. Zhang, D. L., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88(4), 503–509.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ginés B. Martínez-Hernández
    • 1
    • 2
  • Francisco Artés-Hernández
    • 1
    • 2
  • Franciane Colares-Souza
    • 3
  • Perla A. Gómez
    • 2
  • Presentación García-Gómez
    • 4
  • Francisco Artés
    • 1
    • 2
    Email author
  1. 1.Postharvest and Refrigeration Group, Department of Food EngineeringUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Institute of Plant BiotechnologyUniversidad Politécnica de CartagenaCartagenaSpain
  3. 3.Faculdade de Engenharia AgrícolaUniversidade Estadual de CampinasCampinasBrazil
  4. 4.Centro Tecnológico Nacional de la Conserva y AlimentaciónMolina de SeguraSpain

Personalised recommendations