Advertisement

Food and Bioprocess Technology

, Volume 6, Issue 5, pp 1281–1289 | Cite as

Extraction of Polyphenols from Red Grape Pomace Assisted by Pulsed Ohmic Heating

  • Nada El Darra
  • Nabil Grimi
  • Eugène Vorobiev
  • Nicolas Louka
  • Richard Maroun
Original Paper

Abstract

The present work is devoted to the investigation of the effect of pulsed ohmic heating (POH) on cells membrane damage and intensification of polyphenols extraction from red grape pomace. Untreated, POH-treated and freeze-thawed samples were compared. The effects of electric field strength (E = 100–800 V/cm) and the percentage of ethanol in water (E/W = 0–50 %) on polyphenols extraction were discussed. Measurements of electrical conductivity and electric energy consumption were performed for POH pretreatment optimization. Results show that POH treatment results in cells membrane denaturation. This permeabilization increases with the elevation of electric field strength and temperature. POH pretreatment accelerates the extraction kinetics of total polyphenols from grape pomace. Freeze-thawed samples are always accompanied with a high degree of cell damage and high concentration of polyphenols in the extract. The highest extraction yields were obtained with a POH pretreatment at 400 V/cm followed by a diffusion step for 60 min at 50 °C and with a solvent composed of 30 % of ethanol in water. In these conditions, the polyphenol content was 36 % more than untreated samples. The proposed technique (POH pretreatment) appears to be promising for future industrial applications of polyphenols extraction from pomace.

Keywords

Grape pomace Pulsed ohmic heating Cell membrane denaturation Polyphenol content 

Nomenclature

d

Diameter (mm)

E

Electric field strength (V/cm)

h

Height (mm)

I

Current intensity (A)

K1

Peleg rate constant (min 100 g DM/g GAE)

K2

Peleg’s capacity constant (100 g DM/g GAE)

n

Number of pulses

N

Number of trains

NZ

Number of trains to attain the value of Z = 0.8

m

Mass of grape pomace (g)

ms

Mass of the sample (grape pomace + water) (kg)

q

Maximum of extraction rate (g GAE/100 g DM min)

R

Resistance (ohm)

T

Time (min)

ti

Pulse duration (μs)

tt

Total time of POH treatment (s)

tPOH

Effective time of POH treatment (s)

T

Temperature (°C)

Tz

Characteristic damage temperature (°C)

Δt

Time between pulses (ms)

U

Voltage (V)

W

Energy consumption (J/kg)

Y0

Initial yield of total phenolic compounds (g GAE/100 g DM)

Ymax

Maximum extraction yield of phenolic compounds estimated by Peleg’s model (g GAE/100 g DM)

Y(t)

Yield of total phenolic compounds (g GAE/100 g DM)

Z

Disintegration index

Zp

Polyphenols extraction index

Greek symbols

σ

Electrical conductivity (S/m)

τz

Characteristic damage time (s)

α

Electrical conductivity at T = 0 °C (S/m)

β

Slope of σ vs. T (S/m °C)

Subscripts

d

Completely damaged tissue

u

Untreated (intact)

Abbreviations

DM

Dry matter

E/W

Ratio between ethanol and water

FC

Folin Ciocalteu

GAE

Gallic acid equivalent

PEF

Pulsed electric field

POH

Pulsed ohmic heating

Notes

Acknowledgments

The authors would like to thank the society KSARA (Lebanon) for financial support. Thanks to Dr. Nadia Boussetta for her help on the realization of the preparation of the manuscript.

References

  1. Allali, H., Marchal, L., & Vorobiev, E. (2008). Blanching of strawberries by ohmic heating: effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology, 3(3), 406–414.CrossRefGoogle Scholar
  2. Angersbach, A., Heinz, V., & Knorr, D. (2002). Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnology Progress, 18, 597–603.CrossRefGoogle Scholar
  3. Boussetta N (2011a) Intensification de l’extraction des polyphénols par électrotechnologies pour la valorisation des marcs de Champagne. PhD thesis, Université de Technologie de Compiègne.Google Scholar
  4. Boussetta, N., Lanoisellé, J.-L., Bedel-Cloutour, C., & Vorobiev, E. (2009). Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: effect of sulphur dioxide and thermal treatments. Journal of Food Engineering, 95, 192–198.CrossRefGoogle Scholar
  5. Boussetta, N., Lebovka, N., Vorobiev, E., Adenier, H., Bedel-Cloutour, C., & Lanoisellé, J. (2009). Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenol recovery. Journal of Agriculture and Food Chemistry, 57, 1491–1497.CrossRefGoogle Scholar
  6. Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., & Lanoisellé, J. (2011). Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chemistry, 128, 364–370.CrossRefGoogle Scholar
  7. Brasseur, T., Angenot, L., Pinemail, I., & Deby, C. (1986). Antiradicals, antilipid peroxidation and antioxidant properties of flavonoids. Bull. Liaison Groupe Polyphenols, 13, 507.Google Scholar
  8. Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., & Velic, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81, 236–242.CrossRefGoogle Scholar
  9. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science and Emerging Technologies, 9, 85–91.CrossRefGoogle Scholar
  10. De Campos, L., Fernanda, V., Pedrosa, R., & Ferreira, S. (2008). Free radical scavenging of grape pomace extracts from Cabernet sauvignon (Vitis vinifera). Bioresource Technology, 99, 8413–8420.CrossRefGoogle Scholar
  11. De Vito, F., Ferrari, G., Lebovka, N., Shynkaryk, M., & Vorobiev, E. (2008). Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food and Bioprocess Technology, 1(4), 307–313.CrossRefGoogle Scholar
  12. Delsart C, Cholet C, Ghidossi R, Poupot C, Grimi N, Vorobiev E, Milisic V & Mietton-Peuchot M (2010) Effect of pulsed electric field on grape polyphenols extraction. European conference on fluid-particle separation (FPS 2010), 5–7 October 2010, Lyon, France.Google Scholar
  13. Donsì, F., Ferrari, G., Fruilo, M., & Pataro, G. (2010). Pulsed electric field-assisted vinification of Aglianico and Piedirosso grapes. Journal of Agricultural and Food Chemistry, 58(22), 11606–11615.CrossRefGoogle Scholar
  14. Dugand, L. R. (1980). Natural antioxidants. In M. G. Simic & M. Karel (Eds.), Autooxidation in food and biological systems (pp. 261–295). New York: Plenum.Google Scholar
  15. El-Belghiti, K., Rabhi, Z., & Vorobiev, E. (2005). Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. Journal of the Science of Food and Agriculture, 85(2), 213–218.CrossRefGoogle Scholar
  16. Favarel, J.L. (1998). Protection de la vendange et extraction des jus en vendange blanche. Compte Rendu, Extrait de « Cinquantenaire ITV France » .Google Scholar
  17. Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20, 618–626.CrossRefGoogle Scholar
  18. Grimi, N., Praporscic, I., Lebovka, N. I., & Vorobiev, E. (2007). Selective extraction from carrot slices by pressing and washing enhanced by pulsed electric fields. Separation and Purification Technology, 58, 267–273.CrossRefGoogle Scholar
  19. Grimi, N., Lebovka, N. I., Vorobiev, E., & Vaxelaire, J. (2009). Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophysics, 4, 191–198.CrossRefGoogle Scholar
  20. Jackson, R. S. (1994). Wine sciences. New York: Academic.Google Scholar
  21. Jalté, M., Lanoisellé, J. L., Lebovka, N. I., & Vorobiev, E. (2009). Freezing of potato tissue pre-treated by pulsed electric fields. LWT- Food Science and Technology, 42(2), 576–580.CrossRefGoogle Scholar
  22. Ju, Z. Y., & Howard, L. R. (2003). Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agriculture and Food Chemestry, 51, 5207–5213.CrossRefGoogle Scholar
  23. Kammerer, D., Claus, A., Schieber, A., & Carle, A. (2005). A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. Journal of Food Science, 70, 157–163.CrossRefGoogle Scholar
  24. Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2000). Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering, 44, 213–223.CrossRefGoogle Scholar
  25. Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54, 337–346.CrossRefGoogle Scholar
  26. Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., & Vorobiev, E. (2007). Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. Journal of Food Engineering, 80(2), 639–644.CrossRefGoogle Scholar
  27. Lebovka, N. I., Shynkaryk, M., & Vorobiev, E. (2007). Moderate electric field treatment of sugarbeet tissues. Biosystems Engineering, 96(1), 47–56.CrossRefGoogle Scholar
  28. Lebovka, N. I., Kupchik, M. P., Sereda, K., & Vorobiev, E. (2008). Electrostimulated thermal permeabilisation of potato tissues. Biosystems Engineering, 99, 76–80.CrossRefGoogle Scholar
  29. Loginova, K. V., Vorobiev, E., Bals, O., & Lebovka, N. I. (2011). Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. Journal of Food Engineering, 102(4), 340–347.CrossRefGoogle Scholar
  30. Loliger, J. (1991). The use of antioxidants in foods. In O. I. Auroma & B. Halliwell (Eds.), Free radicals and food additives (p. 121). London: Taylor and Francis.Google Scholar
  31. López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, I. (2008). Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science and Emerging Technology, 9(4), 477–482.CrossRefGoogle Scholar
  32. Louli, V., Ragoussis, N., & Magoulas, K. (2004). Recovery of phenolic antioxidants from wine industry by-products. Bioresources Technology, 92, 201–208.CrossRefGoogle Scholar
  33. Macheix, J., Fleurient, A., & Billot J. (1990). Flavanoids. In: Fruit phenolics. Boca Raton: CRC, 39-80.Google Scholar
  34. Murat, M. L., & Dumeau, F. (2005). Recent findings on rosé wine aromas. Part II: optimizing winemaking techniques. Aust. NZ Grapegrower Winemaker, 499, 49-52–54-55.Google Scholar
  35. Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1219.CrossRefGoogle Scholar
  36. Praporscic, I. (2005). Influence du traitement combiné par champ électriques pulsés et chauffage modéré sur les propriétés physiques et sur le comportement au pressage de produits végétaux. Thesis, Université de Technologie de Compiègne, France. Google Scholar
  37. Praporscic, I., Lebovka, N., Vorobiev, E., & Mietton-Peuchot, M. (2007). Pulsed electric field enhanced expression and juice quality of white grapes. Separation and Purification Technology, 52, 520–526.CrossRefGoogle Scholar
  38. Puértolas, E., Hernandez-Orte, P., Sladana, G., Alvarez, I., & Raso, J. (2010). Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Research International, 43(3), 761–766.CrossRefGoogle Scholar
  39. Puértolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010). Potential applications of PEF to improve red wine quality. Trends in Food Science & Technology, 21(5), 247–255.CrossRefGoogle Scholar
  40. Puértolas, E., Saldaña, G., Condón, S., Álvarez, I., & Raso, J. (2010). Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chemistry, 119(3), 1063–1070.CrossRefGoogle Scholar
  41. Puertolas, E., Saldana, G., Alvarez, I., & Raso, J. (2011). Experimental design approach for the evaluation of rose wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chemistry, 126, 1482–1487.CrossRefGoogle Scholar
  42. Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2004). Traité d’oenologie - 2. Chimie du vin—stabilisation et traitements. Dunod, Paris.Google Scholar
  43. Sastry, S. K. (2005). Advances in ohmic heating and moderate electric field (MEF) processing. In G. V. Barbosa-Cànovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies. CRC: Boca Raton.Google Scholar
  44. Sastry, S. K. (2008). Ohmic heating and moderate electric fields processing. Food Science and Technology International, 14, 419.CrossRefGoogle Scholar
  45. Sastry, S., & Barach, J. (2000). Ohmic and inductive heating. Journal of Food Science, 65(4), 42–46.CrossRefGoogle Scholar
  46. Shynkaryk, M., Ji, T., Alvarez, V. B., & Sastry, S. K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), 493–500.CrossRefGoogle Scholar
  47. Singleton, V. L. (1982). Grapes and wine phenolics: Background and prospects. In A. D. Webb (Ed.), Proceedings of the University of California, Davis, wine grape centennial symposium. Davis: Department of Viticulture and Enology, University of California.Google Scholar
  48. Slinkard, K., & Singleton, V. L. (1977). Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55.Google Scholar
  49. Vorobiev E & Lebovka N (eds) (2008) Electro technologies for extraction from food plants and biomaterials. New York: Springer, 272 p. 157 illus., Hardcover.Google Scholar
  50. Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology Biochemistry and Pharmacology, 105, 175–256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nada El Darra
    • 1
    • 2
    • 3
  • Nabil Grimi
    • 1
  • Eugène Vorobiev
    • 1
  • Nicolas Louka
    • 2
  • Richard Maroun
    • 2
  1. 1.Département de Génie des Procédés Industriels, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de RoyallieuUniversité de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Faculté des SciencesUniversité Saint-Joseph de BeyrouthBeirutLebanon
  3. 3.UTC/ESCOM, EA 4297 TIMRCompiègneFrance

Personalised recommendations