Food and Bioprocess Technology

, Volume 6, Issue 1, pp 17–35 | Cite as

The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest

  • Maria Manuela Camino Feltes
  • Débora de Oliveira
  • Jane Mara Block
  • Jorge Luiz Ninow
Review Paper

Abstract

In light of the increasing interest in the development of functional food, several researches have focused on the production of food grade emulsifiers of nutritional interest, especially enriched in the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA). The aim of this paper is to make a review of the production of monoacylglycerols (MAG) and diacylglycerols (DAG) obtained from different feedstock, mainly fish oil. A section of this paper is dedicated to the raw materials used as feedstock for these emulsifiers production. The health benefits of these partial acylglycerols are outlined. The chemical and enzymatic methods for producing these esters of glycerol are discussed, focusing on glycerolysis reactions. Recent advances on the lipase-catalyzed production of these partial acylglycerols in alternative reaction media and systems are also reviewed.

Keywords

Review Monoacylglycerols Diacylglycerols Glycerolysis Lipase Fish oil 

Notes

Acknowledgments

Financial support from Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Santa Catarina, Brazil, is appreciated. A post-doctorate Fellowship for the first author (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brazil) is gratefully acknowledged.

References

  1. Adamczak, M., Bornscheuer, U. T., & Bednarski, W. (2009). The application of biotechnological methods for the synthesis of biodiesel. European Journal of Lipid Science and Technology, 111, 808–813.CrossRefGoogle Scholar
  2. Adhikari, S., Fernando, S., & Haryanto, A. (2007). Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catalysis Today, 129, 355–364.CrossRefGoogle Scholar
  3. Adlercreutz, P. (1996). Modes of using enzymes in organic media. In A. M. P. Koskinen & A. M. Klibanov (Eds.), Enzymatic Reactions in Organic Media (pp. 9–42). London: Chapman & Hall.CrossRefGoogle Scholar
  4. Arcos, J. A., Otero, C., & Hill, C. G., Jr. (1998). Rapid enzymatic production of acylglycerols from conjugated linoleic acid and glycerol in a solvent-free system. Biotechnology Letters, 20(6), 617–621.CrossRefGoogle Scholar
  5. Aro, T., Tahvonen, R., Mattila, T., Nurmi, J., Sivonen, T., & Kallio, H. (2000). Effects of season and processing on oil content and fatty acids of baltic herring (Clupea harengus membras). Journal of Agricultural and Food Chemistry, 48(12), 6085–6093.CrossRefGoogle Scholar
  6. Babicz, I., Leite, S. G. F., Souza, R. O. M. A., & Antunes, O. A. C. (2010). Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasonics Sonochemistry, 17(1), 4–6.CrossRefGoogle Scholar
  7. Bailey, A. E. (1961). Aceites y Grasas Industriales. Zaragoza: Editorial Reverté.Google Scholar
  8. Barouh, N., Piombo, G., Goli, T., Baréa, B., Pina, M., Lago, R., & Villeneuve, P. (2008). Enzymatic production of conjugated linoleic acid monoacylglycerols from dehydrated isomerized castor bean oil. Journal of Food Lipids, 15, 13–27.CrossRefGoogle Scholar
  9. Bendikienë, V., Surinènaité, B., Bachmatova, I., Marcinkeviciené, L., & Juodka, B. (2005). The specificity of Pseudomonas mendocina 3121-1 lipase. Hydrolysis Biologija, 1, 27–30.Google Scholar
  10. Bendikienë, V., Surinènaité, B., Bachmatova, I., Marcinkeviciené, L., & Juodka, B. (2008). Tweens and ionic detergents in the hydrolytic activity of Pseudomonas mendocina 3121-1 lipase. Biologija, 54(4), 242–246.CrossRefGoogle Scholar
  11. BNF (2000). Conference reports: n-3 fatty acids and health. British Nutrition Foundation, United Kingdom. Available at: www.nutrition.org.uk. Accessed 13 January 2006.
  12. Bockisch, M. (1993). Composition, structure, physical data, and chemical reactions of fats and oils, their derivatives, and their associates. In Fats and Oils Handbook (pp. 53–120). Champaign: AOCS Press.Google Scholar
  13. Borg, P., Girardin, M., Rovel, B., & Barth, D. (2000). Comparison between two processes for the enzymatic synthesis of tri-docosahexaenoylglycerol in a solvent-free medium. Biotechnology Letters, 22, 777–781.CrossRefGoogle Scholar
  14. Bornscheuer, U. T. (1995). Lipase-catalyzed syntheses of monoacylglycerols. Enzyme and Microbial Technology, 17, 578–586.CrossRefGoogle Scholar
  15. Bournay, L., Casanave, D., Delfort, B., Hillion, G., & Chodorge, J. A. (2005). New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today, 106(1–4), 190–192.CrossRefGoogle Scholar
  16. Brasil (2005). Resolução RDC n. 270 de 22 de setembro de 2005. Agência Nacional de Vigilância Sanitária, Brasília, Brazil. Available at: www.anvisa.gov.br. Accessed 11 December 2005 (in Portuguese).
  17. Castro, H. F., Mendes, A. A., Santos, J. C., & Aguiar, C. L. (2004). Modificação de óleos e gorduras por biotransformação. Química Nova, 27(1), 146–156 (in Portuguese).CrossRefGoogle Scholar
  18. Cheetham, P. S. J. (1995). Principles of industrial biocatalysis and bioprocessing. In A. Wiseman (Ed.), Handbook of Enzyme Biotechnology (pp. 83–234). Cornwall: Ellis Horwood Limited.Google Scholar
  19. Cho, K., Hong, J., & Lee, K. (2010). Monoacylglycerol (MAG)-oleic acid has stronger antioxidant, anti-atherosclerotic, and protein glycation inhibitory activities than MAG-palmitic acid. Journal of Medicinal Food, 13(1), 99–107.CrossRefGoogle Scholar
  20. Chojnacka, A., Gladkowski, W., Kielbowicz, G., & Wawrzenczyk, C. (2009). Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnology Letters, 31, 705–709.CrossRefGoogle Scholar
  21. Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Review, 107, 2411–2502.CrossRefGoogle Scholar
  22. Damstrup, M. L., Jensen, T., Sparso, F. V., Kiil, S. Z., Jensen, A. D., & Xu, X. (2005). Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. Journal of the American Oil Chemists’ Society, 82(8), 559–564.CrossRefGoogle Scholar
  23. Damstrup, M. L., Jensen, T., Sparso, F. V., Kiil, S. Z., Jensen, A. D., & Xu, X. (2006). Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: process optimization by response surface methodology. Journal of the American Oil Chemists’ Society, 83(1), 27–33.CrossRefGoogle Scholar
  24. Dasari, M. A., Kiatsimkul, P. P., Sutterlin, W. R., & Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: General, 281, 225–231.CrossRefGoogle Scholar
  25. Devi, P., Zhang, H., Damstrup, M. L., Guo, Z., Zhang, L., Lue, B. M., & Xu, X. (2008). Enzymatic synthesis of designer lipids. OCL, 15(3), 189–195.Google Scholar
  26. Dunford, N. T. (2004). Oil- and oilseed-based bioactive compounds and their health effects. In N. T. Dunford & H. B. Dunford (Eds.), Nutritionally enhanced edible oil and oilseed processing. Champaign: AOCS Press.CrossRefGoogle Scholar
  27. Eom, T.-K., Kong, C.-S., Byun, H.-G., Jung, W.-K., & Kim, S.-K. (2010). Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochemistry, 45(5), 738–743.CrossRefGoogle Scholar
  28. Esmelindro, Â. F. A., Fiametti, K. G., Ceni, G., Corazza, M. L., Treichel, H., Oliveira, D., & Oliveira, J. V. (2008). Lipase-catalyzed production of monoglycerides in compressed propane and AOT surfactant. Journal of Supercritical Fluids, 47(1), 64–69.CrossRefGoogle Scholar
  29. Ethier, S., Woisard, K., Vaughan, D., & Wen, Z. (2011). Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology, 102(1), 88–93.CrossRefGoogle Scholar
  30. FDA (2008). 21 CFR 184.1505 - Mono- and diglycerides. Code of Federal Regulations, USDA, Washington DC, USA.Google Scholar
  31. FDA (2010a). 21 CFR 172.838—Polysorbate 65. Code of Federal Regulations, USDA, Washington DC, USA.Google Scholar
  32. FDA (2010b). 21 CFR 182.1320 - Glycerin. Code of Federal Regulations, USDA, Washington DC, USA.Google Scholar
  33. Feltes MMC (2006). Síntese química e enzimática de triglicerídios estruturados a partir de óleo de peixe. Master Thesis. Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil (in Portuguese).Google Scholar
  34. Feltes, M. M. C., Pitol, L. O., Correia, J. F. G., Beirão, L. H., Block, J. M., Ninow, J. L., & Spiller, V. R. (2009). Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic interesterification. Grasas y Aceites, 60(2), 168–176.CrossRefGoogle Scholar
  35. Feltes, M. M. C., Oliveira, J. V., Treichel, H., Block, J. M., Oliveira, D., & Ninow, J. L. (2010). Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. European Food Research and Technology, 231, 701–710.CrossRefGoogle Scholar
  36. Feltes, M. M. C., Villeneuve, P., Baréa, B., Barouh, N., Oliveira, J. V., Oliveira, D., & Ninow, J. L. (2012). Enzymatic production of monoacylglycerols (MAG) and diacylglycerols (DAG) from fish oil in a solvent-free system. Journal of the American Oil Chemists’ Society. doi: 10.1007/s11746-011-1998-2.
  37. Fernando, S., Adhikari, S., Kota, K., & Bandi, R. (2007). Glycerol based automotive fuels from future biorefineries. Fuel, 86(17–18), 2806–2809.CrossRefGoogle Scholar
  38. Ferreira-Dias, S., Correia, A. C., Baptista, F. O., & Fonseca, M. M. R. (2001). Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. Journal of Molecular Catalysis B: Enzymatic, 11, 699–711.CrossRefGoogle Scholar
  39. Fiametti, K. G., Rovani, S., Oliveira, D., Corazza, M. L., Treichel, H., & Oliveira, J. V. (2009). Kinetics of solvent-free lipase catalyzed production of monoacylglycerols from olive oil in Aerosol-OT surfactant. Industrial and Engineering Chemistry Research, 48(2), 708–712.CrossRefGoogle Scholar
  40. Fiametti, K. G., Sychoski, M. M., Cesaro, A., Furigo, A., Jr., Bretanha, L. C., Pereira, C. M. P., Treichel, H., Oliveira, D., & Oliveira, J. V. (2011). Ultrasound irradiation promoted efficient solvent-free lipase-catalyzed production of mono- and diacylglycerols from olive oil. Ultrasonics Sonochemistry, 18, 981–987.CrossRefGoogle Scholar
  41. Foglia, T. A., & Villeneuve, P. (1997). Carica papaya latex-catalyzed synthesis of structured triacylglycerols. Journal of the American Oil Chemists' Society, 74(11), 1447–1450.CrossRefGoogle Scholar
  42. Fregolente, P., Pinto, G., Wolf-Maciel, M., & Filho, R. (2010). Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Applied Biochemistry and Biotechnology, 160(7), 1879–1887.CrossRefGoogle Scholar
  43. Freitas, L., Bueno, T., Perez, V. H., & Castro, H. F. (2008). Monoglicerídios: produção por via enzimática e algumas aplicações. Química Nova, 31(6), 1514–1521 (in Portuguese).CrossRefGoogle Scholar
  44. Freitas, L., Da Rós, P. C. M., Santos, J. C., & Castro, H. F. (2009). An integrated approach to produce biodiesel and monoglycerides by enzymatic interestification of babassu oil (Orbinya sp.). Process Biochemistry, 44, 1068–1074.CrossRefGoogle Scholar
  45. Freitas, L., Paula, A. V., Santos, J. C., Zanin, G. Z., & Castro, H. F. (2010). Enzymatic synthesis of monoglycerides by esterification reaction using Penicillium camembertii lipase immobilized on epoxy SiO2-PVA composite. Journal of Molecular Catalysis B: Enzymatic, 65(1–4), 87–90.CrossRefGoogle Scholar
  46. Gais HJ & Theil F (2002). Hydrolysis and formation of carboxylic acid esters. In: Enzyme catalysis in organic synthesis. K. Drauz and H. Waldmann. Weinheim, Wiley-VCH. 2: 335–578.Google Scholar
  47. Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097–1107.CrossRefGoogle Scholar
  48. van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel production technology. Golden: National Renewable Energy Laboratory.Google Scholar
  49. Goldberg, I. (Ed.). (1994). Functional foods: designer foods, pharmafoods, nutraceuticals. New York: Chapman & Hall.Google Scholar
  50. González-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J. C., Vasconcelos, I., & Soucaille, P. (2005). Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Engineering, 7(5–6), 329–336.CrossRefGoogle Scholar
  51. Gordon, D. T., & Ratliff, V. (1992). The implications of omega 3 fatty acids in human health. In G. J. Flick & R. E. Martin (Eds.), Advances in seafoods biochemistry: composition and quality (pp. 69–91). Lancaster: Technomic Publishing Company.Google Scholar
  52. Griebeler, N., Polloni, A. E., Remonatto, D., Arbter, F., Vardanega, R., Cechet, J., Di Luccio, M., Oliveira, D., Treichel, H., Cansian, R. L., Rigo, E., & Ninow, J. L. (2011). Isolation and screening of lipase-producing fungi with hydrolytic activity. Food and Bioprocess Technology, 4, 578–586.CrossRefGoogle Scholar
  53. Grompone MA (2012). Mono- y di-glicéridos (in press). In: Block & Barrera-Arellano (ed). Temas Selectos en Aceites y Grasas. Editora Blücher, São Paulo, Brazil.Google Scholar
  54. Gulati, R., Arya, P., Malhotra, B., Prasad, A. K., Saxena, R. K., Kumar, J., Watterson, A. C., & Parmar, V. S. (2003). Novel biocatalytic esterification reactions on fatty acids: synthesis of sorbitol 1(6) - monostearate. Arkivoc, iii, 159–170.Google Scholar
  55. Gunstone, F. D. (1999). Enzymes as biocatalysts in the modification of natural lipids. Review. Journal of the Science of Food and Agriculture, 79, 1535–1549.CrossRefGoogle Scholar
  56. Gunstone, F. D., & Herslöf, B. G. (2000). Lipid Glossary 2. Bridgewater, United Kingdom: The Oily Press.Google Scholar
  57. Gunstone, F. D., Harwood, J. L., & Padley, F. B. (1994). Marine oils: fish and whale oils. In F. D. Gunstone (Ed.), The Lipid Handbook (pp. 167–171). London, United Kingdom: Chapman & Hall.Google Scholar
  58. Guo, Z., & Sun, Y. (2004). Solvent-free enzymatic synthesis of 1,3-diconjugated linoleoyl glycerol optimized by response surface methodology. Biotechnology Progress, 20, 619–622.CrossRefGoogle Scholar
  59. Guo, Z., & Sun, Y. (2007). Solvent-free production of 1,3-diglyceride of CLA: strategy consideration and protocol design. Food Chemistry, 100, 1076–1084.CrossRefGoogle Scholar
  60. Gurr, M. I. (1999, 2009). Lipids in nutrition and health: a reappraisal. Bridgwater, United Kingdom: The Oily Press.Google Scholar
  61. Gutiérrez-Ayesta, C., Carelli, A. A., & Ferreira, M. L. (2007). Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme and Microbial Technology, 41, 35–43.CrossRefGoogle Scholar
  62. Hájek, M., & Skopal, F. (2010). Treatment of glycerol phase formed by biodiesel production. Bioresource Technology, 101(9), 3242–3245.CrossRefGoogle Scholar
  63. Hanh, H. D., Dong, N. T., Okitsu, K., Nishimura, R., & Maeda, Y. (2009). Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition. Renewable Energy, 34(780), 780–783.CrossRefGoogle Scholar
  64. Harris, W. S., Mozaffarian, D., Lefevre, M., Toner, C. D., Colombo, J., Cunnane, S. C., Holden, J. M., Klurfeld, D. M., Morris, M. C., & Whelan, J. (2009). Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids. The Journal of Nutrition, 139, 804S–819S.CrossRefGoogle Scholar
  65. Hartvigsen, M. S., Mu, H., & Hoy, C.-E. (2003). Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring—a preliminary study. Nutrition Research, 23, 747–760.CrossRefGoogle Scholar
  66. Hasenhuettl, G. L. (2008). Synthesis and commercial preparation of food emulsifiers. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (pp. 1–38). New York: Springer Science + Business Media.CrossRefGoogle Scholar
  67. Husson, E., Humeau, C., Blanchard, F., Framboisier, X., Marc, I., & Chevalot, I. (2008). Chemo-selectivity of the N, O-enzymatic acylation in organic media and in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 55, 110–117.CrossRefGoogle Scholar
  68. Irimescu, R., Iwasaki, Y., & Hou, C. T. (2002). Study of TAG ethanolysis to 2-MAG by immobilized Candida antarctica lipase and synthesis of symmetrically structured TAG. Journal of the American Oil Chemists’ Society, 79(9), 879–883.CrossRefGoogle Scholar
  69. ISEO. (2006). Food fats and oils. New York: Institute of Shortening and Edible Oils.Google Scholar
  70. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100(3), 260–265.CrossRefGoogle Scholar
  71. Jaeger, K.-E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16(9), 396–403.CrossRefGoogle Scholar
  72. Jeromin L, Wozny G & Li P (2000). Process for the production of monoglyceride based on the glycerolysis of methyl ester. U. S. Patent No 6127561.Google Scholar
  73. Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26, 338–347.CrossRefGoogle Scholar
  74. Kandasamy, R., John Kennedy, L., Vidya, C., Boopathy, R., & Sekaran, G. (2010). Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive oil. Journal of Molecular Catalysis B: Enzymatic, 62(1), 58–65.CrossRefGoogle Scholar
  75. Kao (2010). Diacylglycerol application technology based on long-established fat and oil research. Available at: http://www.kao.com. Accessed 30 October 2010.
  76. Kennedy, J. F. (1995). Principles of immobilization of enzymes. In A. Wiseman (Ed.), Handbook of Enzyme Biotechnology (pp. 235–310). London: Ellis Horwood.Google Scholar
  77. Khare, S. K., & Nakajima, M. (2000). Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chemistry, 68, 153–157.CrossRefGoogle Scholar
  78. Koblitz, M. G. B. (2003). Purificação e caracterização de lipase de Rhizopus sp. e sua aplicação na síntese de monoacilgliceróis. Master Thesis. Department of Food Science, State University of Campinas, Campinas, Brazil (in Portuguese).Google Scholar
  79. Kodali, D. R., & List, G. R. (Eds.). (2005). Trans fats alternatives. Champaign: AOCS Press.Google Scholar
  80. Koller, M., Bona, R., Braunegg, G., Hermann, C., Horvat, P., Kroutil, M., Martinz, J., Neto, J., Pereira, L., & Varila, P. (2005). Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules, 6, 561–565.CrossRefGoogle Scholar
  81. Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106, 2747–2757.CrossRefGoogle Scholar
  82. Krog, N. (1997). Food emulsifiers. In F. D. Gunstone & F. B. Padley (Eds.), Lipid Technologies and Applications (pp. 521–534). New York: Marcel Dekker.Google Scholar
  83. Krüger, R. L., Valério, A., Balen, M., Ninow, J. L., Oliveira, J. V., Oliveira, D., & Corazza, M. L. (2010). Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. European Journal of Lipid Science and Technology, 112(8), 921–927.CrossRefGoogle Scholar
  84. Kulas, E., Olsen, E., & Ackman, R. G. (2003). Oxidation of fish lipids and its inhibition with tocopherols. In A. Kamal-Eldin (Ed.), Lipid oxidation pathways (pp. 37–69). Champaign: AOCS Press.Google Scholar
  85. Lands, W. E. M. (2005). Fish, omega-3 and human health. Champaign: AOCS Press.CrossRefGoogle Scholar
  86. Leon-Calderon, F., Schmitt, V., & Bibette, J. (2007). Emulsion science: basic principles. New York: Springer.Google Scholar
  87. Linder, M., Kochanowski, N., Fanny, J., & Parmentier, M. (2005). Response surface optimization of lipase-catalyzed esterification of glycerol and n-3 polyunsaturated fatty acids from salmon oil. Process Biochemistry, 40, 273–279.CrossRefGoogle Scholar
  88. Liu, Y., Jin, Q., Shan, L., Lin, Y., Shen, W., & Wang, X. (2008). The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 15, 402–407.CrossRefGoogle Scholar
  89. Lo, S.-K., Tan, C.-P., Long, K., Yussof, M. S. A., & Lai, O.-M. (2008). Diacylglycerol oil—properties, processes and products: a review. Food Bioprocess Technology, 1, 223–233.CrossRefGoogle Scholar
  90. Majer, S., Mueller-Langer, F., Zeller, V., & Kaltschmitt, M. (2009). Implications of biodiesel production and utilisation on global climate—a literature review. European Journal of Lipid Science and Technology, 111, 747–762.CrossRefGoogle Scholar
  91. Maki, K., Davidson, M., Tsushima, R., Matsuo, M., Tokimitsu, I., Umporowicz, D., Dicklin, M., Foster, G., Ingram, K., Anderson, B., Frost, S., & Bell, M. (2002). Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. American Journal of Clinical Nutrition, 76(6), 1230–1236.Google Scholar
  92. Maniasso, N. (2001). Ambientes micelares em química analítica. Química Nova, 24(1), 87–93 (in Portuguese).CrossRefGoogle Scholar
  93. Matsuo, N. (2004). Nutritional characteristics and health benefits of diacylglycerol in foods. Food Science and Technology Research, 10(2), 103–110.CrossRefGoogle Scholar
  94. Matsuo, N., & Tokimitsu, I. (2001). Metabolic characteristics of diacylglycerol. Inform, 12, 1098–1102.Google Scholar
  95. Mazur AW, Hiler GD & El-Nokaly M (1992). Process for preparing 2-acylglycerols or 1,2-diacyl diglycerides or 2,3- diacyl diglycerides. US Patent No 5116745.Google Scholar
  96. McClements, D. J. (2008). Lipid-based emulsions and emulsifiers. In C. C. Akoh & D. B. Min (Eds.), Food lipids: chemistry, nutrition, and biotechnology (pp. 63–98). Boca Ratón: CRC Press.Google Scholar
  97. McNeill, G. P., Yamane, T., & Shimizu, S. (1991). A method of producing monoglyceride. European Patent Application No EP 0445692 A3.Google Scholar
  98. Meng, X., Zou, D., Shi, Z., Duan, Z., & Mao, Z. (2004). Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids, 39(1), 37–41.CrossRefGoogle Scholar
  99. Micovi, M., Lutisan, J., & Cvengros, J. (1997). Balance equations for molecular distillation. Separation Science and Technology, 32, 3051–3066.CrossRefGoogle Scholar
  100. Monteiro, J. B., Nascimento, M. G., & Ninow, J. L. (2003). Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnology Letters, 25, 641–644.CrossRefGoogle Scholar
  101. Moquin, P. H. L., & Temelli, F. (2008). Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: a kinetic approach. Journal of Supercritical Fluids, 44, 40–47.CrossRefGoogle Scholar
  102. Morita, O., Knapp, J. F., Tamaki, Y., Varsho, B. J., Stump, D. G., & Nemec, M. D. (2008). Effects of dietary diacylglycerol oil on embryo/fetal development in rats. Food and Chemical Technology, 46, 2510–2516.CrossRefGoogle Scholar
  103. Mota, C. J. A., Silva, C. X. A., & Gonçalves, V. L. C. (2009). Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Química Nova, 32(3), 639–648 (in Portuguese).CrossRefGoogle Scholar
  104. Mu, H., & Hoy, C.-E. (2000). Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols. Lipids, 35(1), 83–89.CrossRefGoogle Scholar
  105. Nielsen, N. S., Göttsche, J. R., Holm, J., Xu, X., Mu, H., & Jacobsen, C. (2005). Effect of structured lipids based on fish oil on the growth and fatty acid composition in rainbow trout (Oncorhynchus mykiss). Aquaculture, 250(1–2), 411–423.CrossRefGoogle Scholar
  106. Ooi, T. L., Yong, K. C., Hazimah, A. H., Dzulkefly, K., & Wan-Yunus, W. M. Z. (2004). Glycerol residue—a rich source of glycerol and medium chain fatty acids. Journal of Oil Science, 53, 29–33.CrossRefGoogle Scholar
  107. Oppe, E. E. G., Salvagnini, W. M., & Taqueda, M. E. S. (2007). Redução da demanda energética na desidratação da glicerina obtida a partir de biodiesel. In: Proceedings of the 8º Congresso Iberoamericano de Engenharia Mecânica, 23–25 October 2007, Cuzco, Peru. Available at: http://congresopucp.pe/cibim8. Accessed 10 September 2010
  108. Osborn, H. T., & Akoh, C. C. (2002). Structured lipids—novel fats with medical, nutraceutical, and food applications. Comprehensive reviews in food science and food safety, 1, 93–103.CrossRefGoogle Scholar
  109. Papanikolau, S., & Aggelis, G. (2003). Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 78, 542–547.CrossRefGoogle Scholar
  110. Pawongrat, R., Xu, X., & H-Kittikun, A. (2007). Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chemistry, 104, 251–258.CrossRefGoogle Scholar
  111. Pawongrat, R., Xu, X., & H-Kittikun, A. (2008). Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. Journal of the Science of Food and Agriculture, 88, 256–262.CrossRefGoogle Scholar
  112. Pella, D., Dubnov, G., Singh, R. B., Sharma, R., Berry, E. M., & Manor, O. (2003). Effects of an Indo-Mediterranean diet on the omega-6/omega-3 ratio in patients at high risk of coronary artery disease. The Indian Paradox. World Review of Nutrition and Dietetics, 92, 74–80.Google Scholar
  113. Pfeffer, J., Freund, A., Bel-Rhlid, R., Hansen, C.-E., Reuss, M., Schmid, R. D., & Maurer, S. C. (2007). Highly efficient enzymatic synthesis of 2-monoacylglycerides and structured lipids and their production on a technical scale. Lipids, 42, 947–953.CrossRefGoogle Scholar
  114. Pigott, G. M., & Tucker, B. W. (1990). Seafood: effects of technology on nutrition. New York: Marcel Dekker.Google Scholar
  115. Platt, D., Pelled, D., & Shulman, A. (2006). Oils enriched with diacylglycerols and phytosterol esters for use in the reduction of blood cholesterol and triglycerides and oxidative stress. US Patent Application No 2006/0052351 A1.Google Scholar
  116. PubChem (2010). Glycerol. Public Chemical Database, National Center for Biotechnology Information, Rockville Pike, USA. Available at: http://pubchem.ncbi.nlm.nih.gov. Accessed 15 December 2010.
  117. Ramani, K., John Kennedy, L., Ramakrishnan, M., & Sekaran, G. (2010). Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochemistry, 45(10), 1683–1691.CrossRefGoogle Scholar
  118. Reddy, J. R. C., Vijeeta, T., Karuna, M. S. L., Rao, B. V. S., & Prasad, R. B. N. (2005). Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. Journal of the American Oil Chemists’ Society, 82(10), 727–730.CrossRefGoogle Scholar
  119. Rousseau, D., & Marangoni, A. G. (2002). The effects of interesterification on the physical properties of fats. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (pp. 479–527). New York: Marcel Dekker.Google Scholar
  120. Salum, T. F. C., Baron, A. M., Zago, E., Turra, V., Baratti, D. A., Mitchell, D., & Krieger, N. (2008). An efficient system for catalyzing ester synthesis using a lipase from a newly isolated Burkholderia cepacia strain. Biocatalysis and Biotransformation, 26(3), 197–203.CrossRefGoogle Scholar
  121. Sartorelli, D. S., Damião, R., Chaim, R., Hirai, A., Gimeno, S. G., & Ferreira, S. R. (2010). Dietary [omega]-3 fatty acid and [omega]-3: [omega]-6 fatty acid ratio predict improvement in glucose disturbances in Japanese Brazilians. Nutrition, 26(2), 184–191.CrossRefGoogle Scholar
  122. Schroder R & Oba K (1992). Method for continuous preparation of highly pure monoglyceride. U. S. Patent Application No 005153126A.Google Scholar
  123. Shimada, Y. (2006). Enzymatic modification of lipids for functional foods and nutraceuticals. In C. C. Akoh (Ed.), Handbook of functional lipids—functional foods and nutraceuticals (pp. 437–456). Boca Ratón: CRC Press.Google Scholar
  124. Simopoulos, A. P. (2004). Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Reviews International, 20(1), 77–90.CrossRefGoogle Scholar
  125. Soccol, M. C. H., & Oetterer, M. (2003). Seafood as functional food. Brazilian Archives of Biology and Technology, 46(3), 443–454.CrossRefGoogle Scholar
  126. Soe JB (2008). Solid phase glycerolysis. U. S. Patent No 2008/0233235 A1.Google Scholar
  127. Stansby, E. M. (1990). Fish oils in nutrition. New York: Van Nostrand Reinhold.Google Scholar
  128. Sugiura M, Yamaguchi H & Yamada N (2001). Process for producing partial glyceride. European Patent No 1094116 A1.Google Scholar
  129. Sugiura M, Yamaguchi H & Yamada N (2002). Preparation process of diglycerides. US Patent No 6361980.Google Scholar
  130. Taguchi, H., Nagao, T., Watanabe, H., Onizawa, K., Matsuo, N., Tokimitsu, I., & Itakura, H. (2001). Energy value and digestibility of dietary oil containing mainly 1,3-diacylglycerol are similar to those of triacylglycerol. Lipids, 36, 379–382.CrossRefGoogle Scholar
  131. Takase, H. (2007). Metabolism of diacylglycerol in humans. Asia Pacific Journal of Clinical Nutrition, 16(1), 398–403.Google Scholar
  132. Takeno N, Shimotoyodome A & Meguro S (2009). Inhibitor of increase in postprandial blood insulin. US Patent No 2009/0124691 A1.Google Scholar
  133. Tangkam, K., Weber, N., & Wiege, B. (2008). Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining. Grasas y Aceites, 59(3), 245–253.Google Scholar
  134. Thengumpillil NBK, Penumarthy V & Ayyagari AL (2002). Process for the preparation of a monoglyceride. US Patent No 6500974 B2.Google Scholar
  135. Torres, C., Lin, B., & Hill, C. G., Jr. (2002). Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnology Letters, 24, 667–673.CrossRefGoogle Scholar
  136. Turon F (2002). Amélioration de la qualité nutritionnelle d’une huile de thon: Biofaçonnement par une enzyme végétale naturellement supportée. Doctorate Thesis. Science des Agroressources, Institut National Polytechnique de Toulouse, Toulouse, France (in French).Google Scholar
  137. USDA. (2010). Fatty acids and cholesterol. Report of the dietary guidelines Advisory Committee on the Dietary Guidelines for Americans. Washington: U.S. Department of Health and Human Services, USDA.Google Scholar
  138. USP. (2009). Glycerin. Revision Bulletin. Rockville: The United States Pharmacopeial Convention.Google Scholar
  139. Valério, A., Krüger, R. L., Ninow, J. L., Corazza, F. C., Oliveira, D., Oliveira, J. V., & Corazza, M. L. (2009). Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. Journal of Agricultural and Food Chemistry, 57, 8350–8356.CrossRefGoogle Scholar
  140. Valério, A., Fiametti, K. G., Rovani, S., Treichel, H., Oliveira, D., & Oliveira, J. V. (2010). Low-pressure lipase-catalyzed production of mono and diglycerides with and without n-butane and AOT surfactant. Applied Biochemistry and Biotechnology, 160, 1789–1796.CrossRefGoogle Scholar
  141. Valério, A., Rovani, S., Treichel, H., Oliveira, D., & Oliveira, J. V. (2010). Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess and Biosystem Engineering, 33(7), 805–812.CrossRefGoogle Scholar
  142. Verger, R. (1997). Interfacial activation of lipases: facts and artifacts. Trends in Biotechnology, 15(1), 32–38.CrossRefGoogle Scholar
  143. Villeneuve, P. (2007). Lipases in lipophilization reactions. Biotechnology Advances, 25, 515–536.CrossRefGoogle Scholar
  144. Villeneuve, P., Muderhwa, J. M., Graille, J., & Hoss, M. J. (2000). Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B: Enzymatic, 9, 113–148.CrossRefGoogle Scholar
  145. Visentainer, J. V., Carvalho, P. O., Ikegaki, M., & Park, Y. (2000). Concentração de ácido eicosapentaenóico (EPA) e ácido docosahexaenóico (DHA) em peixes marinhos da costa brasileira. Ciência e Tecnologia de Alimentos, 20(1), 90–93 (in Portuguese).CrossRefGoogle Scholar
  146. Wanasundara, U. N., & Shahidi, F. (1997). Biotechnological methods for concentrating omega-3 fatty acids from marine oils. In Shahidi, Jones, & Kitts (Eds.), Seafood safety, processing, and biotechnology (pp. 225–233). Lancaster: Technomic.Google Scholar
  147. Wanasundara, U. N., & Shahidi, F. (1998). Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chemistry, 63(3), 335–342.CrossRefGoogle Scholar
  148. Wang, Y., Zhao, M., Song, K., Wang, L., Han, X., Tang, S., & Wang, Y. (2010). Separation of diacylglycerols from enzymatically hydrolyzed soybean oil by molecular distillation. Separation and Purification Technology, 75(2), 114–120.CrossRefGoogle Scholar
  149. Wang, Y., Zhao, M., Song, K., Wang, L., Tang, S., & Riley, W. W. (2010). Partial hydrolysis of soybean oil by phospholipase A1 (Lecitase Ultra). Food Chemistry, 121(4), 1066–1072.CrossRefGoogle Scholar
  150. Watanabe, Y., Yamauchi-Sato, Y., Nagao, T., Yamamoto, T., Ogita, K., & Shimada, Y. (2004). Production of monoacylglycerol of conjugated linoleic acid by esterification followed by dehydration at low temperature using Penicillium camembertii lipase. Journal of Molecular Catalysis B: Enzymatic, 27, 249–254.CrossRefGoogle Scholar
  151. Wolski, E., Menusi, E., Remonatto, D., Vardanega, R., Arbter, F., Rigo, E., Ninow, J. L., Mazutti, M. A., Di Luccio, M., Oliveira, D., & Treichel, H. (2009). Partial characterization of lipases produced by a newly isolated Penicillium sp. in solid state and submerged fermentation: a comparative study. LWT- Food Science and Technology, 42(9), 1557–1560.CrossRefGoogle Scholar
  152. Wongsakul, S., H-Kittikun, A., & Bornscheuer, U. T. (2004). Lipase-catalyzed synthesis of structured triacylglycerides from 1,3-diacylglycerides. Journal of American Oil Chemist's Society, 81(2), 151–155.CrossRefGoogle Scholar
  153. Xu, X. (2004). Biocatalysis for lipid modifications. In N. T. Dunford & H. B. Dunford (Eds.), Nutritionally enhanced edible oil and oilseed processing (pp. 239–263). Champaign: AOCS Press.Google Scholar
  154. Yamada Y, Shimizu M, Sugiura M & Yamada N (1999). Process for producing diglycerides. World Patent No 99/09119.Google Scholar
  155. Yang, T., Fruekilde, M.-B., & Xu, X. (2003). Applications of immobilized Thermomyces lanuginosa lipase in interesterification. Journal of the American Oil Chemists' Society, 80(9), 881–887.CrossRefGoogle Scholar
  156. Yang, Y.-C., Vali, S. R., & Ju, Y.-H. (2003). A process for synthesizing high purity monoglyceride. Journal of Chinese Institute of Chemical Engineering, 34(6), 617–623.Google Scholar
  157. Yang, T., Rebsdorf, M., Engelrud, U., & Xu, X. (2005). Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. Journal of Agricultural and Food Chemistry, 53, 1475–1481.CrossRefGoogle Scholar
  158. Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18, 213–219.CrossRefGoogle Scholar
  159. Yesiloglu, Y., & Kilic, I. (2004). Lipase-catalyzed esterification of glycerol and oleic acid. Journal of the American Oil Chemists' Society, 81(3), 281–284.CrossRefGoogle Scholar
  160. Zaks A & Gross AK (1999). Enzymatic production of monoglycerides containing omega-3 unsaturated fatty acids. US Patent No 5935828.Google Scholar
  161. Zhong, N., Li, L., Xu, X., Cheong, L.-Z., Zhao, X., & Li, B. (2010). Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chemistry, 122(1), 228–232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maria Manuela Camino Feltes
    • 1
  • Débora de Oliveira
    • 2
  • Jane Mara Block
    • 3
  • Jorge Luiz Ninow
    • 2
  1. 1.Department of Food Engineering, IFCConcórdiaBrazil
  2. 2.Department of Food Engineering, UFSCFlorianópolisBrazil
  3. 3.Department of Food Science and Technology, UFSCFlorianópolisBrazil

Personalised recommendations