Food and Bioprocess Technology

, Volume 5, Issue 6, pp 2058–2076 | Cite as

Edible and Biodegradable Starch Films: A Review

  • Alberto Jiménez
  • María José Fabra
  • Pau Talens
  • Amparo Chiralt
Review Paper

Abstract

Mainly due to environmental aims, petroleum-based plastics are being replaced by natural polymers. In the last decades, starch has been evaluated in its film-forming ability for applications in the food packaging area. Characteristics of the starch film matrices, the film formation methods, and physicochemical properties of the starch films are reviewed in this paper. The influences of different components added in casting methods and thermoplastic processes have been also analyzed. Comparison of mechanical properties of newly prepared starch films and stored films reveals that the recrystallization phenomenon made the films more rigid and less stretchable. These effects can be inhibited by adding other polymers to the starch matrix. Other approaches to improve the starch films’ properties are the reinforcement by adding organic or inorganic fillers to the starch matrix as well as the addition of functional compounds. In this way starch films have improved mechanical and barrier properties and can act as a bioactive packaging. Physicochemical properties of the starch films showed a great variability depending on the compounds added to the matrix and the processing method. Nevertheless, dry methods are more recommendable for film manufacturing because of the greater feasibility of the industrial process. In this sense, a better understanding of the nano and microstructural changes occurring in the matrices and their impact on the film properties is required.

Keywords

Biopolymer Crystallinity Film formation Casting 

References

  1. Abdorreza, M. N., Cheng, L. H., & Karim, A. A. (2011). Effect of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloids, 25, 56–60.CrossRefGoogle Scholar
  2. Alves, V. D., Costa, N., & Colehoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrates Polymers, 79, 269–276.CrossRefGoogle Scholar
  3. Anonymous. (1967). Edible packaging offers pluses for frozen meat, poultry. Quick Frozen Foods, 29, 165–167. 213–214.Google Scholar
  4. Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81, 839–848.CrossRefGoogle Scholar
  5. Arvanitoyannis, I., & Biliaderis, C. G. (1998). Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry, 62(3), 333–342.CrossRefGoogle Scholar
  6. Arvanitoyannis, I., & Biliaderis, C. G. (1999). Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 38(1), 47–58.CrossRefGoogle Scholar
  7. Arvanitoyannis, I. S., & Kassaveti, A. (2009). Starch–cellulose blends. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 19–53). New York: Wiley.Google Scholar
  8. Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., & Yamamoto, N. (1997). Edible films made from gelatin, soluble starch and polyols. Part III. Food Chemistry, 60, 593–604.CrossRefGoogle Scholar
  9. Audic, J. L., & Chaufer, B. (2005). Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. European Polymer Journal, 41, 1934–1942.CrossRefGoogle Scholar
  10. Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467–474.CrossRefGoogle Scholar
  11. Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56, 111–122.CrossRefGoogle Scholar
  12. Bangyekan, C., Aht-Ong, D., & Srikulkit, K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1), 61–71.CrossRefGoogle Scholar
  13. Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., dos Santos, R. M. C., da Silva, F. B. R., Prison, J. M., et al. (2008). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 21(2), 85–89.CrossRefGoogle Scholar
  14. Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80, 972–978.CrossRefGoogle Scholar
  15. Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82, 17–25.CrossRefGoogle Scholar
  16. Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. LWT—Food Science and Technology, 41, 1633–1641.Google Scholar
  17. Briston, J. H. (1986). Films, plastic. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 329–335). New York: Wiley.Google Scholar
  18. Brown, W. H., & Poon, T. (2005). Introduction to organic chemistry (3rd ed.). New York: Wiley.Google Scholar
  19. Burros, B. C., Young, L. A., & Carroad, P. A. (1987). Kinetics of corn meal gelatinization at high temperature and low moisture. Journal of Food Science, 52(5), 1372–1376.CrossRefGoogle Scholar
  20. Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875.CrossRefGoogle Scholar
  21. Carvalho, A. J. F. (2008). Starch: major sources, properties and applications as thermoplastic materials. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 321–342). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45(2), 189–194.CrossRefGoogle Scholar
  23. Cheetham, N. W. H., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284.CrossRefGoogle Scholar
  24. Chen, J., Liu, C., Chen, Y., Chen, Y., & Chang, P. R. (2008). Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydrate Polymers, 74, 946–952.CrossRefGoogle Scholar
  25. Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88, 159–168.CrossRefGoogle Scholar
  26. Chiotelli, E., & Le Meste, M. (2003). Effect of triglycerides on gelatinisation and rheological properties of concentrated potato starch preparations. Food Hydrocolloids, 17, 629–639.CrossRefGoogle Scholar
  27. Chung, Y. L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. P., & Lai, H. M. (2010). Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydrate Polymers, 79, 391–396.CrossRefGoogle Scholar
  28. Claudy, P., Jabranes, S., & Létoffé, J. M. (1997). Annealing of glycerol glass: enthalpy, fictive temperature and glass transition change with annealing parameters. Thermochimica Acta, 293, 1–11.CrossRefGoogle Scholar
  29. Curvelo, A. A. S., Carvalho, A. J. F., & Agnelli, J. A. M. (2001). Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydrate Polymers, 45(2), 183–188.CrossRefGoogle Scholar
  30. Delville, J., Joly, C., Dole, P., & Bliard, C. (2003). Influence of photo crosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53, 373–381.CrossRefGoogle Scholar
  31. Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51, 213–219.CrossRefGoogle Scholar
  32. Dole, P., Joly, C., Espuche, E., Alric, I., & Gontard, N. (2004). Gas transport properties of starch based films. Carbohydrate Polymers, 58, 335–343.CrossRefGoogle Scholar
  33. Donovan, J. W. (1979). Phase transitions of the starch–water system. Biopolymers, 18(2), 263–275.CrossRefGoogle Scholar
  34. Durrani, C. M., & Donald, A. M. (1995). Physical characterization of amylopectin gels. Polymer Gels and Networks, 3(1), 1–27.CrossRefGoogle Scholar
  35. Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173–1182.CrossRefGoogle Scholar
  36. Enrione, J., Osorio, F., Pedreschi, F., & Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technology, 3(6), 791–796.CrossRefGoogle Scholar
  37. Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393–400.CrossRefGoogle Scholar
  38. Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of fatty acids and beeswax addition on properties of sodium caseinate dispersions and films. Biomacromolecules, 10, 1500–1507.CrossRefGoogle Scholar
  39. Fakhouri, F. M., Fontes, L. C. B., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2009). Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Starch/Stärke, 61, 528–536.CrossRefGoogle Scholar
  40. Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303.CrossRefGoogle Scholar
  41. Famá, L., Flores, S. K., Gerschenson, L., & Goyanes, S. (2006). Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, 66, 8–15.CrossRefGoogle Scholar
  42. Famá, L., Goyanes, S., & Gerschenson, L. (2007). Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydrate Polymers, 70, 265–273.CrossRefGoogle Scholar
  43. Fernández-Cervera, M., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., et al. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58, 69–76.CrossRefGoogle Scholar
  44. Fishman, M. L., Coffin, D. R., Konstance, R. P., & Onwulata, C. I. (2000). Extrusion of pectin/starch blends plasticized with glycerol. Carbohydrate Polymers, 41(4), 317–325.CrossRefGoogle Scholar
  45. Flores, S., Conte, A., Campos, C., Gerschenson, L., & Del Nobile, M. (2007). Mass transport properties of tapioca-based active edible films. Journal of Food Engineering, 81(3), 580–586.CrossRefGoogle Scholar
  46. Forsell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch–glycerol–water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34, 275–282.CrossRefGoogle Scholar
  47. Frost, K., Barthes, J., Kaminski, D., Lascaris, E., Niere, J., & Shanks, R. (2011). Thermoplastic starch-silica-polyvinyl alcohol composites by reactive extrusion. Carbohydrate Polymers, 84(1), 343–350.CrossRefGoogle Scholar
  48. García, M. A., Martino, M. N., & Zaritzky, N. E. (2000a). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–947.CrossRefGoogle Scholar
  49. García, M. A., Martino, M. N., & Zaritzky, N. E. (2000b). Microstructural characterization of plasticized starch-based films. Starch/Starke, 52, 118–124.CrossRefGoogle Scholar
  50. Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11, 697–702.CrossRefGoogle Scholar
  51. Gontard, N., Thibault, R., Cuq, B., & Guilbert, S. (1996). Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. Journal of Agricultural and Food Chemistry, 44(4), 1064–1069.CrossRefGoogle Scholar
  52. Han, J. H., Seo, G. H., Park, I. M., Kim, G. N., & Lee, D. S. (2006). Physical and mechanical properties of pea starch edible films containing beeswax emulsions. Journal of Food Science, 71(6), 290–296.CrossRefGoogle Scholar
  53. Handley, D., Ma-Edmonds, M., Hamouz, F., Cuppett, S., Mandigo, R., & Schnepf, M. (1996). Controlling oxidation and warmed-over flavor in precooked pork chops with rosemary oleoresin and edible film. In F. Shahidi (Ed.), Natural antioxidants chemistry, health effects and applications (pp. 311–318). Champaign: AOCS Press.Google Scholar
  54. Hanlon, J. F. (1992). Films and foils. In Technomic: handbook of package engineering (pp. 3.1–3.59). Lancaster: Technomic Publishing Co.Google Scholar
  55. Hargens-Madsen, M., Schnepf, M., Hamouz, F., Weller, C., & Roy, S. (1995). Use of edible films and tocopherol in the control of warmed over flavor. Journal of the Academy of Nutrition and Dietetics, 95, A – 41.Google Scholar
  56. Hernández, O., Emaldi, U., & Tovar, J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, 71, 648–655.CrossRefGoogle Scholar
  57. Hodge, S., & Osman, M. (1976). Carbohydrates. In O. Fennema (Ed.), Principles of food science, Part 1, food chemistry (pp. 41–138). New York: Marcel Dekker.Google Scholar
  58. Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267.CrossRefGoogle Scholar
  59. Hosokawa, M., Nogi, K., Makio, N., & Yokoyama, T. (2008). Nanoparticle technology handbook. Amsterdam: Elsevier.Google Scholar
  60. Hu, G., Chen, J., & Gao, J. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76, 291–298.CrossRefGoogle Scholar
  61. Jenkins, P. J., & Donald, A. M. (1998). Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydrate Research, 308(1–2), 133–147.CrossRefGoogle Scholar
  62. Jenkins, P. J., Cameron, R. E., & Donald, A. M. (1993). A universal feature in the structure of starch granules from different botanical sources. Starch/Stärke, 45(12), 417–420.CrossRefGoogle Scholar
  63. Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohydrates Polymers, 82, 585–593.CrossRefGoogle Scholar
  64. Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310.CrossRefGoogle Scholar
  65. Kim, M., & Lee, S. J. (2002). Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydrate Polymers, 50(4), 331–337.CrossRefGoogle Scholar
  66. Kim, K. W., Ko, C. J., & Park, H. J. (2002). Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch-based edible films. Journal of Food Science, 67(1), 218–222.CrossRefGoogle Scholar
  67. Kristo, E., & Biliaderis, C. G. (2007). Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 68(1), 146–158.CrossRefGoogle Scholar
  68. Kroger, M., & Igoe, R. S. (1971). Edible containers. Food Product Development, 5, 74–82.Google Scholar
  69. Lai, T. Y., Chen, C. H., & Lai, L. S. (2011). Effects of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the quality of minimally processed carrots. Food and Bioprocess Technology, accepted manuscript. doi:10.1007/s11947-011-0707-3.
  70. Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., et al. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106, 95–101.CrossRefGoogle Scholar
  71. Limpisophon, K., Tanaka, M., & Osako, K. (2010). Characterization of gelatin-fatty acid emulsion films based on blue shark (Prionace glauca) skin gelatin. Food Chemistry, 122(4), 1095–1101.CrossRefGoogle Scholar
  72. Liu, Z. (2005). Edible films and coatings from starch. In J. H. Han (Ed.), Innovations in food packaging (pp. 318–332). London: Elsevier Academic Press.CrossRefGoogle Scholar
  73. Liu, Q., & Thompson, D. B. (1998). Retrogradation of du wx and su2 wx maize starches after different gelatinization heat treatments. Cereal Chemistry, 75(6), 868–874.CrossRefGoogle Scholar
  74. Liu, H., Lelievre, J., & Ayoung-Chee, W. (1991). A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydrate Research, 210, 79–87.CrossRefGoogle Scholar
  75. Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348–1368.CrossRefGoogle Scholar
  76. López, O. V., García, M. A., & Zaritzky, N. E. (2008). Film forming capacity of chemically modified corn starches. Carbohydrate Polymers, 73(4), 573–581.CrossRefGoogle Scholar
  77. Lourdin, D., Della Valle, G., & Colonna, P. (1995). Influence of amylose content on starch films and foams. Carbohydrate Polymers, 27(4), 261–270.CrossRefGoogle Scholar
  78. Love, J. D. (1988). Sensory analysis of warmed-over flavor in meat. Food Technology, 42(6), 140–143.Google Scholar
  79. Lu, Y., Tighzert, L., Berzin, F., & Rondot, S. (2005). Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydrate Polymers, 61(2), 174–182.CrossRefGoogle Scholar
  80. Ma-Edmonds, M., Hamouz, F., Cuppett, S., Madigo, R., & Schnepf, M. (1995). Use of rosemary oleoresin and edible film to control warmed-over flavor in pre-cooked beef patties. Abstract No. 50–6 IFT Annual Meeting. Anaheim, CA.Google Scholar
  81. Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50, 379–386.CrossRefGoogle Scholar
  82. Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2004). Barrier, mechanical and optical properties of plasticized yam starch films. Carbolydrate Polymers, 56(2), 129–135.CrossRefGoogle Scholar
  83. Mali, S., Grossman, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460.CrossRefGoogle Scholar
  84. Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocolloids, 22, 826–835.CrossRefGoogle Scholar
  85. Morgan, B. H. (1971). Edible packaging update. Food Product Development, 5(6), 75–77. 108.Google Scholar
  86. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009a). Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydrate Polymers, 77, 293–299.CrossRefGoogle Scholar
  87. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009b). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328–1333.CrossRefGoogle Scholar
  88. Müller, C. M. O., Laurindo, J. B., & Yamashita. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33, 605–610.CrossRefGoogle Scholar
  89. Nakazawa, Y., & Wang, Y.-J. (2004). Effect of annealing on starch-palmitic acid interaction. Carbohydrate Polymers, 57, 327–335.CrossRefGoogle Scholar
  90. Osés, J., Fernández-Pan, I., Mendoza, M., & Maté, J. I. (2009). Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocolloids, 23(1), 125–131.CrossRefGoogle Scholar
  91. Osés, J., Niza, S., Ziani, K., & Mate, J. I. (2009). Potato starch edible films to control oxidative rancidity of polyunsaturated lipid: effects of film composition, thickness and water activity. International Journal of Food Science and Technology, 44, 1360–1366.CrossRefGoogle Scholar
  92. Paes, S. S., Yakimets, I., & Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids, 22, 788–797.CrossRefGoogle Scholar
  93. Pagella, C., Spigno, G., & De Faveri, D. M. (2002). Characterization of starch based edible coatings. Food and Bioproducts Processing, 80(3), 193–198.CrossRefGoogle Scholar
  94. Petersson, M., & Stading, M. (2005). Water vapour permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocolloids, 19, 123–132.CrossRefGoogle Scholar
  95. Phan The, D., Debeaufort, F., Voilley, A., & Luu, D. (2009). Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arobinoxylan blends. Journal of Food Engineering, 90, 548–558.CrossRefGoogle Scholar
  96. Psomiadou, E., Arvanitoyannis, I., & Yamamoto, N. (1996). Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols—Part 2. Carbohydrate Polymers, 31(4), 193–204.CrossRefGoogle Scholar
  97. Pushpadass, H. A., Marx, D. B., & Hanna, M. A. (2008). Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch/Stärke, 60, 527–538.CrossRefGoogle Scholar
  98. Pyla, R., Kim, T. J., Silva, J. L., & Jung, Y. S. (2010). Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. International Journal of Food Microbiology, 137(2–3), 154–160.CrossRefGoogle Scholar
  99. Ratnayake, W. S., & Jackson, D. S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers, 67, 511–529.CrossRefGoogle Scholar
  100. Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118, 702–711.CrossRefGoogle Scholar
  101. Rhim, J. W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433.CrossRefGoogle Scholar
  102. Rindlav, A., Hulleman, S. H. D., & Gatenholm, P. (1997). Formation of starch films with varying crystallinity. Carbohydrate Polymers, 34, 25–30.CrossRefGoogle Scholar
  103. Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840–846.CrossRefGoogle Scholar
  104. Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60, 235–244.CrossRefGoogle Scholar
  105. Ronda, F., & Roos, Y. H. (2008). Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 343(5), 903–911.CrossRefGoogle Scholar
  106. Sacharow, S. (1972). Edible films. Packaging, 43(8), 6–9.Google Scholar
  107. Salame, M. (1986). Barrier Polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley.Google Scholar
  108. Salleh, E., Muhamad, I., & Khairuddin, N. (2009). Structural characterization and physical properties of antimicrobial (AM) starch-based films. World Academy of Science, Engineering and Technology, 55, 432–440.Google Scholar
  109. Shellhammer, T. H., & Krochta, J. M. (1997). Edible coating and film barriers. In F. D. Gunstone & F. B. Padley (Eds.), Lipids-industrial applications and technology (pp. 453–479). New York: Marcel Dekker.Google Scholar
  110. Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290.CrossRefGoogle Scholar
  111. Smith, A. M. (2001). The biosynthesis of starch granules. Biomacromolecules, 2(2), 335–341.CrossRefGoogle Scholar
  112. Sothornvit, R., & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of beta-globulin (β-Lg) films. Journal of Food Engineering, 50(3), 149–155.CrossRefGoogle Scholar
  113. Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources 1: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers, 60(4), 529–538.CrossRefGoogle Scholar
  114. St. Angelo, A. J., & Bailey, M. F. (1987). Warmed over flavor in meats (p. 294). Orlando: Academic.Google Scholar
  115. Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288–295.CrossRefGoogle Scholar
  116. Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2008). Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydrate Polymers, 71, 269–276.CrossRefGoogle Scholar
  117. Tan, I., Wee, C. C., Sopade, P. A., & Halley, P. J. (2004). Investigation of the starch gelatinisation phenomena in water-glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 58, 191–204.CrossRefGoogle Scholar
  118. Tang, X., Alavi, S., & Herald, T. J. (2008). Effect of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydrate Polymers, 74, 552–558.CrossRefGoogle Scholar
  119. Tang, H., Xiong, H., Tang, S., & Zou, P. (2009). A starch-based biodegradable film modified by nano silicon dioxide. Journal of Applied Polymer Science, 113(1), 34–40.CrossRefGoogle Scholar
  120. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78.CrossRefGoogle Scholar
  121. Thomas, D. J., & Atwell, W. A. (1997). Starches. St. Paul: Eagan Press Handbook Series.Google Scholar
  122. Thunwall, M., Kuthanová, V., Boldizar, A., & Rigdahl, M. (2008). Film blowing of thermoplastic starch. Carbohydrate Polymers, 71, 583–590.CrossRefGoogle Scholar
  123. Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Research International, 42, 762–769.CrossRefGoogle Scholar
  124. Vázquez, A., & Álvarez, V. A. (2009). Starch-cellulose fiber composites. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 241–286). New York: Wiley.Google Scholar
  125. Whistler, R. L., BeMiller, J. N., & Paschall, B. F. (1984). Starch: chemistry and technology (2nd ed.). New York: Academic.Google Scholar
  126. Wilhelm, H.-M., Sierakowski, M.-R., Souza, G. P., & Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers, 52, 101–110.CrossRefGoogle Scholar
  127. Wong, D. W. S., Camirand, W. M., & Pavlath, A. E. (1994). Development of edible coatings for minimally processed fruits and vegetables. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 65–88). Lancaster: Technomic Publishing Company.Google Scholar
  128. Wongsasulak, S., Yoovidhya, T., Bhumiratana, S., Hongsprabhas, P., McClements, D. J., & Weiss, J. (2006). Thermo-mechanical properties of egg albumen-cassava starch composite films containing sunflower-oil droplets as influenced by moisture content. Food Research International, 39, 277–284.CrossRefGoogle Scholar
  129. Wu, Y., Weller, C. L., Hamouz, F., Cuppet, S., & Schnepf, M. (2001). Moisture loss and lipid oxidation forprecooked ground-beef patties packaged in edible starch alginate-based composite films. Journal of Food Science, 66(3), 486–493.CrossRefGoogle Scholar
  130. Wu, R. L., Wang, X. L., Li, F., Li, H. Z., & Wang, Y. Z. (2009). Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresource Technology, 100, 2569–2574.CrossRefGoogle Scholar
  131. Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76, 299–304.CrossRefGoogle Scholar
  132. Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering, 30, 891–897.CrossRefGoogle Scholar
  133. Yu, L., & Chen, L. (2009). Polymers from renewable resources. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 1–15). New York: Wiley.CrossRefGoogle Scholar
  134. Yu, J., Yang, J., Liu, B., & Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresource Technology, 100(1), 2832–2841.CrossRefGoogle Scholar
  135. Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57, 83–88.CrossRefGoogle Scholar
  136. Zhong, F., Li, Y., Ibanz, A. M., Oh, M. H., Mckenzie, K. S., & Shoemaker, C. (2009). The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starch pastes. Food Hydrocolloids, 23, 406–414.CrossRefGoogle Scholar
  137. Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84, 335–342.CrossRefGoogle Scholar
  138. Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C. (2007). Effect of the addition of fatty acids on rice starch properties. Food Research International, 40, 209–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alberto Jiménez
    • 1
  • María José Fabra
    • 1
  • Pau Talens
    • 1
  • Amparo Chiralt
    • 1
  1. 1.Departamento de Tecnología de AlimentosInstituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations