Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 5, pp 1423–1446 | Cite as

Application of Modified Atmosphere Packaging and Active/Smart Technologies to Red Meat and Poultry: A Review

  • Ioannis S. Arvanitoyannis
  • Alexandros Ch. Stratakos
Review Paper

Abstract

This paper reviews the current advances in modified atmosphere packaging (MAP) of red meat and poultry products. This type of packaging results in shelf-life prolongation by inhibiting microbial growth and promoting oxidative stability, compared to those packaged aerobically. High O2 modified atmosphere packaging results in the desirable red colour, but it also enhances both lipid and pigment oxidation and promotes the growth of aerobic spoilage microorganisms. The presence of high levels of CO2 in modified atmosphere packages inhibits microbial growth but can also cause meat discoloration through oxidation. Low O2 MAP atmospheres limit microbial growth but change the colour of meat to purple. The use of CO gives promising results due to its positive effects on colour and microorganism growth inhibitions which result in shelf-life prolongation during wider distribution of case-ready products. The use of MAP can lead to an effective growth reduction of pathogenic microorganisms like Listeria sp. and Salmonella sp. The combination of MAP and vacuum with other treatments can be an effective tool in delivering safe minimally processed foodstuffs. In response to the changes in consumer demand and market trends, the area of active and intelligent/smart packaging is becoming more and more important. These relatively new technologies are capable of providing better results regarding product safety and shelf-life prolongation as well as communicating information on several quality characteristics of packaged food during transportation and storage.

Keywords

MAP Active and intelligent packaging Meat Poultry Quality Microbial quality 

References

  1. Ahn, H.-J., Jo, C., Lee, J. W., Kim, J. H., Kim, K. H., & Byun, M. W. (2003). Irradiation and modified atmosphere packaging effects on residual nitrite, ascorbic acid, nitrosomyoglobin and color in sausage. Journal of Agriculture and Food Chemistry, 51, 1249–1253.Google Scholar
  2. Ahvenainen, R. (2003). Active and intelligent packaging: an introduction. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 5–21). Cambridge: Woodhead.Google Scholar
  3. Al-Haddad, K. S. H., Al-Qassemi, R. A. S., & Robinson, R. K. (2005). The use of gaseous ozone and gas packaging to control populations of Salmonella infantis and Pseudomonas aeruginosa on the skin of chicken portions. Food Control, 16, 405–410.Google Scholar
  4. Alocilja, E. C., & Radke, S. M. (2003). Market analysis of biosensors for food safety. Biosensors and Bioelectronics, 18, 841–846.Google Scholar
  5. Appendini, P., & Hotchkiss, J. (2001). Surface modification of poly(styrene) by the attachment of an antimicrobial peptide. Journal of Applied Polymer Science, 81, 609–616.Google Scholar
  6. Balamatsia, C. C., Patsias, A., Kontominas, M. G., & Savvaidis, I. N. (2007). Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: correlation with microbiological and sensory attributes. Food Chemistry, 104, 1622–1628.Google Scholar
  7. Bolumar, T., Andersen, M. L., & Orlien, V. (2011). Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chemistry, 129(4), 1406–1412.Google Scholar
  8. Brody, A. L., Strupinsky, E. R., & Kline, L. R. (2001). Active packaging for food applications (p. 218). Technomic: Lancaster.Google Scholar
  9. Buys, E. M. (2004). Colour changes and consumer acceptability of bulk packaged pork retail cuts stored under O2, CO2 and N2. Meat Science, 68, 641–647.Google Scholar
  10. Byelashov, O. A., & Sofos, J. N. (2009). Strategies for on-line decontamination of carcasses. In F. Toldra (Ed.), Safety of meat and processed meat (pp. 149–182). New York: Springer.Google Scholar
  11. Camo, J., Beltrán, J. A., & Roncalés, P. (2008). Extension of the display life of lamb with an antioxidant active packaging. Meat Science, 80, 1086–1091.Google Scholar
  12. Camo, J., Lorés, A., Djenane, D., Beltrán, J. Á., & Roncalés, P. (2011). Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract. Meat Science, 88, 174–178.Google Scholar
  13. Campo, M. M., Nute, G. R., Hughes, S. I., Enser, M., Wood, J. D., & Richardson, R. I. (2006). Flavour perception of oxidation in beef. Meat Science, 72(2), 303–311.Google Scholar
  14. Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875.Google Scholar
  15. Carpenter, C. E., Cornforth, D. P., & Whittier, D. (2001). Consumer preferences for beef color and packaging did not affect eating satisfaction. Meat Science, 57(4), 359–363.Google Scholar
  16. Chiavaro, E., Zanardi, E., Bottari, E., & Ianieri, A. (2008). Efficacy of different storage practices in maintaining the physicochemical and microbiological properties of fresh pork sausage. Journal of Muscle Foods, 19, 157–174.Google Scholar
  17. Church, N. (1994). Developments in modified-atmosphere packaging and related technologies: a review. Trends in Food Science and Technology, 5, 345–352.Google Scholar
  18. Coles, R., McDowell, D., & Kirwan, M. J. (2003). Food packaging technology. Oxford: Blackwell.Google Scholar
  19. Coma, V. (2006). Perspectives for the active packaging of meat products. In L. M. L. Nollet & F. Toldra (Eds.), Advanced technologies for meat processing (p. 454). Boca Raton: CRC.Google Scholar
  20. Congguo, M.A., Yazhou, L.I., Lan, Yu (2011) Research on pork quality traceability system based on RFID. Fourth International Conference on Information and Computing. pp. 34-37, DOI: 10.1109/ICIC.2011.100.Google Scholar
  21. Cornforth, D. & Hunt, M. (2008) Low-oxygen packaging of fresh meat with carbon monoxide—meat quality, microbiology and safety. In: AMSA white paper series: No. 2. The American Meat Science Association.Google Scholar
  22. Cosby, D. E., Harrison, M. A., Toledo, R. T., & Craven, S. E. (1999). Vacuum or modified atmosphere packaging and EDTA–nisin treatment to increase poultry product shelf life. Journal of Applied Poultry Research, 8(2), 185–190.Google Scholar
  23. Curiel, J. A., Ruiz-Capillas, C., de las Rivas, B., Carrascosa, A. V., Jiménez-Colmenero, F., & Muñoz, R. (2011). Production of biogenic amines by lactic acid bacteria and enterobacteria isolated from fresh pork sausages packaged in different atmospheres and kept under refrigeration. Meat Science, 88, 368–373.Google Scholar
  24. Daniels, J. A., Krishnamurthi, R., & Rizvi, S. S. H. (1985). A review of effects of carbon dioxide on microbial growth and food quality. Journal of Food Protection, 48, 532–537.Google Scholar
  25. De Jong, A. R., Boumans, H., Slaghekt, T., Van Veen, J., Rijk, R., & Van Zandvoort, M. (2005). Active and intelligent packaging for food: is it the future? Food Additives and Contaminants, 22(10), 975–979.Google Scholar
  26. De Santos, F., Rojas, M., Lockhorn, G., & Brewer, M. S. (2007). Effect of carbon monoxide in modified atmosphere packaging, storage time and endpoint cooking temperature on the internal color of enhanced pork. Meat Science, 77, 520–528.Google Scholar
  27. Dhananjayan, R., Han, I. Y., Acton, J. C., & Dawson, P. L. (2006). Growth depth effects of bacteria in ground turkey meat patties subjected to high carbon dioxide or high oxygen atmospheres. Poultry Science, 85(10), 1821–1828.Google Scholar
  28. Dixon, N. M., & Kell, D. B. (1989). The inhibition by CO2 of the growth and metabolism of micro-organisms. Journal of Applied Bacteriology, 67, 109–136.Google Scholar
  29. Djenane, D., Sanchez-Escalante, A., Beltran, J. A., & Roncales, P. (2002). Ability of a-tocopherol, taurine and rosemary, in combination with vitamin C, to increase the oxidative stability of beef steaks packaged in modified atmosphere. Food Chemistry, 76, 407–415.Google Scholar
  30. Djenane, D., Sanchez-Escalante, A., Beltran, J. A., & Roncales, P. (2003). The shelf-life of beef steaks treated with dl-lactic acid and antioxidants and stored under modified atmospheres. Food Microbiology, 20, 1–7.Google Scholar
  31. Djenane, D., Martinez, L., Sanchez-Escalante, A., Beltran, J. A., & Roncales, P. (2004). Antioxidant effect of carnosine and carnitine in fresh beef steaks stored under modified atmosphere. Food Chemistry, 85(3), 453–459.Google Scholar
  32. Eilamo, M., Ahvenainen, R., Hurme, E., Heiniii, R. L., & Mattila-Sandhoim, T. (1995). The effect of package leakage on the shelf-life of modified atmosphere packed minced meat steaks and its detection. Lebensmittel-Wissenschaft und Technologie, 28, 62–71.Google Scholar
  33. El-Badawi, A. A., Cain, R. F., Samuels, C. E., & Anglemeir, A. F. (1964). Color and pigment stability of packaged refrigerated beef. Food Technology, 18(5), 159–166.Google Scholar
  34. Ellouze, M., & Augustin, J.-C. (2010). Applicability of biological time temperature integrators as quality and safety indicators for meat products. International Journal of Food Microbiology, 138, 119–129.Google Scholar
  35. Ellouze, M., Gauchi, J.-P., & Augustin, J. C. (2011). Use of global sensitivity analysis in quantitative microbial risk assessment: application to the evaluation of a biological time temperature integrator as a quality and safety indicator for cold smoked salmon. Food Microbiology, 28, 755–769.Google Scholar
  36. Farber, J. M. (1991). Microbiological aspects of modified-atmosphere packaging: a review. Journal of Food Protection, 54, 58–70.Google Scholar
  37. FDA (2002) Response regarding GRAS notice of carbon monoxide as a gas component in MAP systems for fresh meat destined to retail display. GRAS notice No. 000083. FDA Office of Food Additive Safety (http:// www.cfsan.fda.gov/~rdb/opa-g083.html).
  38. Floros, J. D., & Cnanasekharan, V. (1991). Principles, technology and applications of destructive and nondestructive package integrity testing. In R. K. Singh & P. E. Nelson (Eds.), Advances in aseptic processing technology (pp. 157–188). Amsterdam: Elsevier.Google Scholar
  39. Franco-Abuín, C. M., Rozas-Barrero, J., Romero-Rodríguez, M. A., Cepeda-Sáez, A., & Fente-Sampayo, C. (1997). Effect of modified atmosphere packaging on the growth and survival of Listeria in raw minced beef. Food Science and Technology International, 3(4), 285–290.Google Scholar
  40. Fraqueza, M. J., & Barreto, A. S. (2009). The effect on turkey meat shelf life of modified-atmosphere packaging with an argon mixture. Poultry Science, 88(9), 1991–1998.Google Scholar
  41. Fraqueza, M. J., Ferreira, M. C., & Barreto, A. S. (2008). Spoilage of light (PSE-like) and dark turkey meat under aerobic or modified atmosphere package: microbial indicators and their relationship with total volatile basic nitrogen. British Poultry Science, 49(1), 12–20.Google Scholar
  42. Galagan, Y., & Su, W. F. (2008). Fadable ink for time–temperature control of food freshness: Novel new time–temperature indicator. Food Research International, 41, 653–657.Google Scholar
  43. Gestrelius, H., Mattila-Sandholm, T., & Ahvenainen, R. (1994). Methods for non-invasive sterility control in aseptically packaged foods. Trends in Food Science and Technology, 5, 379–383.Google Scholar
  44. Gill, C. O., & Jones, T. (1996). The display life of retail packaged pork chops after their storage in master packs under atmosphere of N2, CO2 or O2+ CO2. Meat Science, 42, 203–213.Google Scholar
  45. Gok, V., Obuz, E., & Akkaya, L. (2008). Effects of packaging method and storage time on the chemical, microbiological, and sensory properties of Turkish pastirma—a dry cured beef product. Meat Science, 80, 335–344.Google Scholar
  46. Greengrass, J. (1993). Films for MAP of foods. In T. R. Parry (Ed.), Principles and applications of modified atmosphere packaging of food. London: Blackie Academic and Professional.Google Scholar
  47. Greengrass, J. (1999). Packaging materials for MAP of foods. In B. A. Blakistone (Ed.), Principles and applications of modified atmosphere packaging of food. Gaithersburg: Aspen.Google Scholar
  48. Guerra, N. P., Macias, C. L., Agrasar, A. T., & Castro, L. P. (2005). Development of bioactive packaging cellophane using nisaplin as biopreservative agent. Letters in Applied Microbiology, 40, 106–110.Google Scholar
  49. Ha, J. U., Kim, Y. M., & Lee, D. S. (2001). Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packaging Technology and Science, 15, 55–62.Google Scholar
  50. Han, J. H. (2005). New technologies in food packaging: overview. In J. H. Han (Ed.), Innovations in food packaging (pp. 3–11). Amsterdam: Elsevier.Google Scholar
  51. Han, J. H., & Gennadios, A. (2005). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in food packaging (pp. 240–262). Amsterdam: Elsevier.Google Scholar
  52. Hong, I. H., Dang, J. F., Tsai, Y. H., Liu, C. S., Lee, W. T., Wang, M. L., & Chen, P. C. (2011). An RFID application in the food supply chain: a case study of convenience stores in Taiwan. Journal of Food Engineering, 106, 119–126.Google Scholar
  53. Hulánková, R., Bořilová, G., & Steinhauserová, I. (2010). Influence of modified atmosphere packaging on the survival of Salmonella enteritidis pt 8 on the surface of chilled chicken legs. Acta Veterinaria Brno, 79(SUPPL. 9), 127–S132.Google Scholar
  54. Hunt, M. C., Mancini, R. A., Hachmeister, K. A., Kropf, D. H., Merriman, M., Del Duca, G., & Milliken, G. (2004). Carbon monoxide in modified atmosphere packaging affects color, shelf life and microorganisms of beef steaks and ground beef. Journal of Food Science, 45, 45–52.Google Scholar
  55. Hurme, E. (2003). Detecting leaks in modified atmosphere packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 276–286). Cambridge: Woodhead.Google Scholar
  56. Hurme E., Ahvenainen R., Mattila-Sandholm T. & Jarvl-Kaariainen T. (1996) Leakage indicators for gas packages. In Proceedings of the International Symposium on Food Packaging: Ensuring the Safety and Qualify of Foods, 11–13 September 1996, Budapest, p. 56, ILSI, Budapest, Hungary.Google Scholar
  57. Jakobsen, M., & Bertelsen, G. (2000). Colour stability and lipid oxidation of fresh beef: development of a response surface model for predicting the effects of temperature, storage time, and modified atmosphere composition. Meat Science, 54, 49–57.Google Scholar
  58. Jakobsen, M., & Bertelsen, G. (2002). The use of CO2 in packaging of fresh red meats and its effect on chemical quality changes in the meat: a review. Journal of Muscle Foods, 13, 143–168.Google Scholar
  59. Jayasingh, P., Cornforth, D. P., Carpenter, C. E., & Whittier, D. (2001). Evaluation of carbon monoxide treatment in modified atmosphere packaging or vacuum packaging to increase color stability of fresh beef. Meat Science, 59, 317–324.Google Scholar
  60. Jeong, J. Y., & Claus, J. R. (2011). Color stability of ground beef packaged in a low carbon monoxide atmosphere or vacuum. Meat Science, 87, 1–6.Google Scholar
  61. Jimenez, S. M., Salsi, M. S., Tiburzi, M. C., Rafaghelli, R. C., & Pirovani, M. E. (1999). Combined use of acetic acid treatment and modified atmosphere packaging for extending the shelf-life of chilled chicken breast portions. Journal of Applied Microbiology, 87, 339–344.Google Scholar
  62. Jofre, A., Aymerich, T., & Garriga, M. (2008). Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control, 19, 634–638.Google Scholar
  63. John, L., Cornforth, D., Carpenter, C. E., Sorheim, O., Pettee, B. C., & Whittier, D. R. (2005). Color and thiobarbituric acid values of cooked top sirloin steaks packaged in modified atmospheres of 80% oxygen, or 0.4% carbon monoxide, or vacuum. Meat Science, 69, 441–449.Google Scholar
  64. Kenedy, C., Buckley, D. J., & Kerry, J. P. (2004). Display life of sheep meats retail packaged under atmospheres of various volumes and compositions. Meat Science, 68, 649–658.Google Scholar
  65. Keokamnerd, T., Acton, J. C., Han, I. Y., & Dawson, P. L. (2008). Effect of commercial rosemary oleoresin preparations on ground chicken thigh meat quality packaged in a high-oxygen atmosphere. Poultry Science, 87(1), 170–179.Google Scholar
  66. Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilization of active and intelligent packaging systems for meat and muscle based products: a review. Meat Science, 74, 113–130.Google Scholar
  67. Kim, Y. H., Huff-Lonergan, E., Sebranek, J. G., & Lonergan, S. M. (2010). High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Science, 85(4), 759–67.Google Scholar
  68. Kirwan, M. J., & Strawbridge, J. W. (2003). Plastics in food packaging. In R. Coles, D. McDowell, & M. J. Kirwan (Eds.), Food packaging technology (pp. 174–240). Boca Raton: CRC.Google Scholar
  69. Krause, T. R., Sebranek, J. G., Rust, R. E., & Honeyman, M. S. (2003). Use of carbon monoxide packaging for improving the shelf life of pork. Journal of Food Science, 68(8), 2596–2603.Google Scholar
  70. Kropf, D. H. (2004). Packaging. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat science (Vol. 3, pp. 943–976). New York: Elsevier.Google Scholar
  71. Kumar, S., & Budin, E. M. (2006). Prevention and management of product recalls in the processed food industry: a case study based on an exporter’s perspective. Technovation, 26, 739–750.Google Scholar
  72. Labuza T.P. & Taoukis P.S. (1990) The relationship between processing and shelf life. In GG Birch, G Campbell-Platt, and MG Lindley (eds). Foods for the 90’s. Developments Series. New York: Elsevier Applied Science, Ch. 6, 73–105.Google Scholar
  73. Lagerstedt, Å., Lundström, K., & Lindahl, G. (2010). Influence of vacuum or high-oxygen modified atmosphere packaging on quality of beef M. longissimus dorsi steaks after different ageing times. Meat Science, 87, 101–106.Google Scholar
  74. Lagerstedt, Å., Ahnström, M. L., & Lundström, K. (2011). Vacuum skin pack of beef—a consumer friendly alternative. Meat Science, 88, 391–396.Google Scholar
  75. Lawlor, K. A., Pierson, M. D., Hackney, C. R., Claus, J. R., & Marcy, J. E. (2000). Nonproteolytic Clostridium botulinum toxigenesis in cooked turkey stored under modified atmospheres. Journal of Food Protection, 63(11), 1511–1516.Google Scholar
  76. Limbo, S., Torri, T., Sinelli, N., Franzetti, L., & Casiraghi, E. (2010). Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Science, 84, 129–136.Google Scholar
  77. Lund, M. N., Hviid, M. S., & Skibsted, L. H. (2007). The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Science, 76, 226–233.Google Scholar
  78. Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., & Skibsted, L. H. (2007). High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Science, 77, 295–303.Google Scholar
  79. Lund, M. N., Heinonen, M., & Baron, C. P. (2011). Protein oxidation in muscle foods: a review. Molecular Nutrition & Food Research, 55, 83–95.Google Scholar
  80. Luño, M., Beltrán, J. A., & Roncalés, P. (1998). Shelf life extension and colour stabilization of beef packaged in a low O2 atmosphere containing CO: loin steaks and ground meat. Meat Science, 48, 75–84.Google Scholar
  81. Luño, M., Roncales, P., Djenane, D., & Beltran, J. A. (2000). Beef shelf life in low O2 and high CO2 atmospheres containing different low CO concentrations. Meat Science, 55, 413–419.Google Scholar
  82. Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71, 100–121.Google Scholar
  83. Mancini, R. A., Hunt, M. C., Hachmeister, K. A., Kropf, D. H., & Johnson, D. E. (2005). Exclusion of oxygen from modified atmosphere packages limits beef rib and lumbar vertebrae marrow discoloration during display and storage. Meat Science, 69, 493–500.Google Scholar
  84. Mancini, R. A., Hunt, M. C., Seyfert, M., Kropf, D. H., Hachmeister, K. A., Herald, T. J., & Johnson, D. E. (2007). Comparison of ascorbic acid and sodium erythorbate: effects on the 24 h display colour of beef lumbar vertebrae and longissimus lumborum packaged in high-oxygen modified atmospheres. Meat Science, 75, 39–43.Google Scholar
  85. Mancini, R. A., Ramanathan, R., Suman, S. P., Konda, M. K. R., & Joseph, P. (2010) Effects of lactate and modified atmospheric packaging on premature browning in cooked ground beef patties. Meat Science, 85, 339–346.Google Scholar
  86. Marcos, B., Aymerich, T., Monfort, J., & Garriga, M. (2007). Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. International Journal of Food Microbiology, 120(1–2), 152–158.Google Scholar
  87. Martinez, L., Djenane, D., Cilla, I., Beltran, J. A., & Roncales, P. (2005). Effect of different concentrations of carbon dioxide and low concentration of carbon monoxide on the shelf-life of fresh pork sausages packaged in modified atmosphere. Meat Science, 71, 563–570.Google Scholar
  88. McMillin, K. W. (2008). Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Science, 80(1), 43–65.Google Scholar
  89. Michael, K. & McCathie, L. (2005) "The Pros and Cons of RFID in Supply Chain Management," ICMB. International Conference on Mobile Business (ICMB'05), 2005 pp. 623-629.Google Scholar
  90. Millette, M., Le Tien, C., Smoragiewicz, W., & Lacroix, M. (2007). Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control, 18, 878–884.Google Scholar
  91. Mills A. (1998) International symposium on printing and coating technology. Conference proceedings. Swansea, UK, 12-1-12-11.Google Scholar
  92. Moleyar, V., & Narasimham, P. (1994). Modified atmosphere packaging of vegetables—an appraisal. Journal of Food Science and Technology, 31, 267–278.Google Scholar
  93. Monahan, F. J. (2003). Oxidation of lipids in muscle foods: fundamental and applied concerns. In E. Decker & C. C. Faustman (Eds.), Antioxidants in muscle foods (pp. 3–23). Chichester: Wiley.Google Scholar
  94. Morzel, M., Gatellier, P., Sayd, T., Renerre, M., & Laville, E. (2006). Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Science, 73(3), 536–543.Google Scholar
  95. Mullan, M., & McDowell, D. (2003). Modified atmosphere packaging. In R. Coles, D. McDowell, & M. J. Kirwan (Eds.), Food packaging technology (pp. 303–339). Boca Raton: CRC.Google Scholar
  96. Neethirajan, S., Jayas, D. S., & Sadistap, S. (2009). Carbon dioxide (CO2) sensors for the agri-food industry: a review. Food and Bioprocess Technology, 2, 115–121.Google Scholar
  97. Nerin, C., Tovar, L., Djenane, D., Camo, J., Salafranca, J., Beltran, J. A., & Roncales, P. (2006). Stabilization of beef meat by a new active packaging containing natural antioxidants. Journal of Agriculture and Food Chemistry, 54, 7840–7846.Google Scholar
  98. Nissen, H., Alvseike, O., Bredholt, S., Holck, A., & Nesbakken, T. (2000). Comparison between growth of Yersinia enterocolitica, Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella spp. in ground beef packed by three commercially used packaging techniques. International Journal of Food Microbiology, 59, 211–220.Google Scholar
  99. Ntzimani, A. G., Paleologos, E. K., Savvaidis, I. N., & Kontominas, M. G. (2008). Formation of biogenic amines and relation to microbial flora and sensory changes in smoked turkey breast fillets stored under various packaging conditions at 4 °C. Food Microbiology, 25, 509–517.Google Scholar
  100. Oussalah, M., Caillet, S., Salmieri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agriculture and Food Chemistry, 52, 5598–5605.Google Scholar
  101. Ozbas, Z. Y., Vural, H., & Aytac, S. A. (1996). Effects of modified atmosphere and vacuum packaging on the growth of spoilage and inoculated pathogenic bacteria on fresh poultry. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 203(4), 326–332.Google Scholar
  102. Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44, 185–193.Google Scholar
  103. Paramithiotis, S., Skandamis, P. N., & Nychas, G. J. E. (2009). Insights into fresh meat spoilage. In F. Toldra (Ed.), Safety of meat and processed meat (pp. 55–82). New York: Springer.Google Scholar
  104. Parry, T. R. (1993). Introduction. In T. R. Parry (Ed.), Principles and applications of modified atmosphere packaging of food. London: Blackie Academic and Professional.Google Scholar
  105. Patsias, A., Chouliara, I., Badeka, A., Savvaidis, I. N., & Kontominas, M. G. (2006). Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: microbiological, chemical, sensory attributes. Food Microbiology, 23, 423–429.Google Scholar
  106. Pettersen, M. K., Mielnik, M. B., Eie, T., Skrede, G., & Nilsson, A. (2004). Lipid oxidation in frozen, mechanically deboned turkey meat as affected by packaging parameters and storage conditions. Poultry Science, 83(7), 1240–1248.Google Scholar
  107. Phillips, C. A. (1996). Review: Modified Atmosphere Packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science and Technology, 31, 463–479.Google Scholar
  108. Piringer, O. G., & Baner, A. L. (2000). Plastic packaging materials for food. Weinheim: Wiley VCH.Google Scholar
  109. Pundir C.S., Devi R., Narang, J., Singh, Jyoti Nehra S. & Chaudhry S. (2010) Fabrication of an amperometric xanthine biosensor based on polyvinylchloride membrane. Journal of Food Biochemistry, ISSN 1745-4514 (published online).Google Scholar
  110. Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3), 373–380.Google Scholar
  111. Rajkumar, R., Dushyanthan, K., Asha Rajini, R., & Sureshkumar, S. (2007). Effect of modified atmosphere packaging on microbial and physical qualities of turkey meat. American Journal of Food Technology, 2(3), 183–189.Google Scholar
  112. Ramamoorthi, L., Toshkov, S., & Brewer, M. S. (2009). Effects of carbon monoxide-modified atmosphere packaging and irradiation on E. coli K12 survival and raw beef quality. Meat Science, 83, 358–365.Google Scholar
  113. Rao, D. N., & Sachindra, N. M. (2002). Modified atmosphere and vacuum packaging of meat and poultry products. Food Reviews International, 18, 263–293.Google Scholar
  114. Reddy, N. R., Amstrong, D. J., Rhodehamel, E. J., & Kauter, D. A. (1992). Shelf-life extension and safety concerns about fresh fishery products packaged under modified atmospheres: a review. Journal of Food Safety, 12, 87–118.Google Scholar
  115. Robertson, G. L. (2006). Food packaging: principles and practice. Food science and technology. Boca Raton: Taylor & Francis.Google Scholar
  116. Rokka, M., Eerola, S., Smolander, M., Alakomi, H. L., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions. B. Biogenic amines as quality-indicating metabolites. Food Control, 15, 601–607.Google Scholar
  117. Rooney, M. L. (1995). Active packaging in polymer films. In M. L. Rooney (Ed.), Active food packaging (pp. 74–110). Glasgow: Blackie Academic and Professional.Google Scholar
  118. Rubio, B., Martinez, B., Gonzalez-Fernandez, C., Garcia-Cachan, M. D., Rovira, J., & Jaime, I. (2006). Influence of storage period and packaging method on sliced dry cured beef “Cecina de Leon”: effects on microbiological, physicochemical and sensory quality. Meat Science, 74, 710–717.Google Scholar
  119. Sahoo, J., & Anjaneyulu, A. S. R. (1995). Modified atmosphere packaging of muscle foods: technology shelf life and safety aspects. Indian Food Industry, 14, 28–36.Google Scholar
  120. Samelis, J., Kakouri, A., & Rementzis, J. (2000). Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4 °C. Food Microbiology, 17, 329–340.Google Scholar
  121. Sanchez-Escalante, Α., Djenane, D., Torrescano, G., Beltran, J. S., & Roncales, P. (2001). The effects of ascorbic acid, taurine, carnosine and rosemary powder on colour and lipid stability of beef patties packaged in modified atmosphere. Meat Science, 58, 421–429.Google Scholar
  122. Sanchez-Escalante, A., Torrescano, G., Djenane, D., Beltran, J. A., & Roncales, P. (2003). Combined effect of modified atmosphere packaging and addition of lycopene rich tomato pulp, oregano and ascorbic acid and their mixtures on the stability of beef patties. Food Science and Technology International, 9(2), 77–84.Google Scholar
  123. Scannell, A. G. M., Hill, C., Ross, R. P., Marx, S., Hartmeier, W., & Arendt, E. K. (2000). Development of bioactive food packaging materials using immobilized bacteriocins Lacticin 3147 and Nisaplin®. International Journal of Food Microbiology, 60, 241–249.Google Scholar
  124. Sebranek, J. G., & Houser, T. A. (2006). Modified atmosphere packaging. In L. M. L. Nollet & F. Toldra (Eds.), Advanced technologies for meat processing (p. 424). Boca Raton: CRC.Google Scholar
  125. Selke, S. E. M., Culter, J. D., & Hernandez, R. J. (2004). Plastics packaging properties, processing, applications and regulations (2nd ed., pp. 100–105). Munich: Hanser.Google Scholar
  126. Seyfert, M., Hunt, M. C., Mancini, R. A., Kropf, D. H., & Storda, S. L. (2004). Internal premature browning in cooked steaks from enhanced beef round muscles packaged in high-oxygen and ultra-low oxygen modified atmospheres. Journal of Food Science, 69(2), 721–725.Google Scholar
  127. Sivertsvik, M., Jeksrud, W. K., & Rosnes, J. T. (2002). A review of modified atmosphere packaging of fish and fishery products—significance of microbial growth, activities and safety. International Journal of Food Science and Technology, 37, 107–127.Google Scholar
  128. Skandamis, P. N., & Nychas, G. J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79, 35–45.Google Scholar
  129. Smiddy, M., Papkovskaia, N., Papkovsky, D. B., & Kerry, J. D. (2002). Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Research International, 35, 577–584.Google Scholar
  130. Smolander, M. (2003). The use of freshness indicators in packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 128–143). Cambridge: Woodhead.Google Scholar
  131. Smolander, M., Hurme, E., & Ahvenainen, R. (1997). Leak indicators for modified atmosphere packages. Trends in Food Science and Technology, 8(4), 101–106.Google Scholar
  132. Smolander, M., Hurme, E., Latva-Kala, K., Luoma, T., Alakomi, H. L., & Ahvenainen, R. (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innovative Food Science and Emerging Technologies, 3, 279–288.Google Scholar
  133. Solomon, J. (2004). Eliminating oxygen. Meat Poultry, 9, 39–41.Google Scholar
  134. Sørheim, O., Nissen, H., & Nesbakken, T. (1999). The storage life of beef and pork packaged in an atmosphere with low carbon monoxide and high carbon dioxide. Meat Science, 52, 157–164.Google Scholar
  135. Sørheim, O., Ofstad, R., & Lea, P. (2004). Effects of carbon dioxide on yield, texture and microstructure of cooked ground beef. Meat Science, 67, 231–236.Google Scholar
  136. Stetzer, A. J., Wicklund, R. A., Paulson, D. D., Tucker, E. M., Macfarlane, M. J., & Brewer, M. S. (2007). Effect of carbon monoxide and high oxygen modified atmosphere packaging (MAP) on quality characteristics of beef strip steaks. Journal of Muscle Foods, 18(1), 6–66.Google Scholar
  137. Stolzenbach, S., Leisner, J. J., & Byrne, D. V. (2009). Sensory shelf life determination of a processed meat product ‘rullepøse’ and microbial metabolites as potential indicators. Meat Science, 83, 285–292.Google Scholar
  138. Sun, C., Ji, Z., Yang, X., Han, X., & Wang, Z. (2007). A traceability system for beef products based on radio frequency identification technology in China. New Zealand Journal of Agricultural Research, 50(5), 1269–1275.Google Scholar
  139. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.Google Scholar
  140. Taoukis, P. S. (2001). Modelling the use of time–temperature indicators. In L. M. M. Tijskens, M. L. A. T. M. Hertog, & B. M. Nicolai (Eds.), Food process modelling (pp. 402–431). Cambridge: Woodhead Publishing In Food Science and Technology.Google Scholar
  141. Taoukis, P. S., & Labuza, T. P. (2003a). Time–temperature indicators (TTIs) in novel food packaging technologies. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 105–107). Cambridge: Woodhead.Google Scholar
  142. Taoukis, P. S., & Labuza, T. P. (2003b). Time–temperature indicators (TTIs). In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 103–126). Cambridge: Woodhead.Google Scholar
  143. Thippareddi, H. & Phebus, R.K. (2007) Modified atmosphere packaging (MAP): microbial control and quality. Pork Information Gateway Factsheet, 12-05-07, 1-5.Google Scholar
  144. Tovar, L., Salafranca, J., Sanchez, C., & Nerin, C. (2008). Migration studies to assess the safety in use of a new antioxidant active packaging. Meat Science, 78, 90–103.Google Scholar
  145. Tsemakhovich, V. & Shaklai, N. (2000) Extension of meat shelf-life by high level carbon monoxide modified atmosphere. In Proceedings of the 46th International Congress Meat Science and Technology, Buenos Aires, Argentina, p.p. 772-773.Google Scholar
  146. Tsironi, T., Gogou, E., Velliou, E., & Taoukis, P. S. (2008). Application and validation of the TTI based chill chain management system SMAS (Safety Monitoring and Assurance System) on shelf life optimization of vacuum packed chilled tuna. International Journal of Food Microbiology, 128, 108–115.Google Scholar
  147. Twede, D., & Harte, B. (2003). Logistical packaging for food marketing systems. In R. Coles, D. Mcdowell, & M. J. Kirwan (Eds.), Food packaging technology (pp. 98–99). Oxford: Blackwell.Google Scholar
  148. Vaikousi, H., Biliaderis, C. G., & Koutsoumanis, K. P. (2008). Development of a microbial time/temperature indicator prototype for monitoring the microbiological quality of chilled foods. Applied and Environmental Microbiology, 74, 3242–3250.Google Scholar
  149. Vaikousi, H., Biliaderis, C. G., & Koutsoumanis, K. P. (2009). Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. International Journal of Food Microbiology, 133, 272–278.Google Scholar
  150. Vázquez, B. I., Carriera, L., Franco, C., Fente, C., Cepeda, A., & Barros-Velázquez, J. (2004). Shelf life extension of beef retail cuts subjected to an advanced vacuum skin packaging system. European Food Research and Technology, 218, 118–122.Google Scholar
  151. Veberg, A., Sorheim, O., Moan, J., Iani, V., Juzenas, P., Nilsen, A. N., & Wold, J. P. (2006). Measurement of lipid oxidation and porphyrins in high oxygen modified atmosphere and vacuum-packed minced turkey and pork meat by fluorescence spectra and images. Meat Science, 73, 511–520.Google Scholar
  152. Vermeiren, L., Devlieghere, F., Van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10, 77–86.Google Scholar
  153. Viana, E. S., Gomide, L. A. M., & Vanetti, M. C. D. (2005). Effect of modified atmospheres on microbiological, color and sensory properties of refrigerated pork. Meat Science, 71, 696–705.Google Scholar
  154. Wang, Z., Fu, Z, Chen, W. & Hu, J. (2010) A RFID-based traceability system for cattle breeding in China. 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). Taiyuan 22–24 Oct. 2010. pp. 567-571.Google Scholar
  155. Wanihsuksombat, C., Hongtrakul, V., & Suppakul, P. (2010). Development and characterization of a prototype of a lactic acid-based time–temperature indicator for monitoring food product quality. Journal of Food Engineering, 100, 427–434.Google Scholar
  156. Wicklund, R. A., Paulson, D. D., Tucker, E. M., Stetzer, A. J., DeSantos, F., Rojas, M., MacFarlane, B. J., & Brewer, M. S. (2006). Effect of carbon monoxide and high oxygen modified atmosphere packaging and phosphate enhanced, case-ready pork chops. Meat Science, 74, 704–709.Google Scholar
  157. Xu, B., Liu, Z., Ren, F., & Sun, Y. (2006). Effects of natural preservative and modified atmosphere packaging on shelf-life of sliced beef ham. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 22(3), 143–147.Google Scholar
  158. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: concepts and applications. Journal of Food Science, 70, 1–10.Google Scholar
  159. Yan, S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z., & Hengtao, Z. (2008). Development and characterization of a new amylase type time–temperature indicator. Food Control, 19, 315–319.Google Scholar
  160. Zakrys-Waliwander, P. I., O’Sullivan, M. G., O’Neill, E. E., & Kerry, J. P. (2012). The effects of high oxygen modified atmosphere packaging on protein oxidation of bovine M. longissimus dorsi muscle during chilled storage. Food Chemistry, 131, 527–532.Google Scholar
  161. Zhang, M., & Sundar, S. (2005). Effect of oxygen concentration on the shelf-life of fresh pork packed in a modified atmosphere. Packaging Technology and Science, 18, 217–222.Google Scholar
  162. Zhao, Y., Wells, J. H., & McMillin, K. W. (1994). Applications of dynamic modified atmosphere packaging systems for fresh red meats: a review. Journal of Muscle Foods, 5, 299–328.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ioannis S. Arvanitoyannis
    • 1
  • Alexandros Ch. Stratakos
    • 1
  1. 1.Laboratory of Food Science and Technology, Department of Agriculture, Ichthyology and Aquatic Environment, School of Agricultural SciencesUniversity of ThessalyVolosGreece

Personalised recommendations