Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 5, pp 1447–1464 | Cite as

Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications

  • Paula Judith Perez Espitia
  • Nilda de Fátima Ferreira SoaresEmail author
  • Jane Sélia dos Reis Coimbra
  • Nélio José de Andrade
  • Renato Souza Cruz
  • Eber Antonio Alves Medeiros
Review Paper

Abstract

Zinc oxide (ZnO) is an inorganic compound widely used in everyday applications. ZnO is currently listed as a generally recognized as safe (GRAS) material by the Food and Drug Administration and is used as food additive. The advent of nanotechnology has led the development of materials with new properties for use as antimicrobial agents. Thus, ZnO in nanoscale has shown antimicrobial properties and potential applications in food preservation. ZnO nanoparticles have been incorporated in polymeric matrices in order to provide antimicrobial activity to the packaging material and improve packaging properties. This review presents the main synthesis methods of ZnO nanoparticles, principal characteristics and mechanisms of antimicrobial action as well as the effect of their incorporation in polymeric matrices. Safety issues such as exposure routes and migration studies are also discussed.

Keywords

Zinc oxide Nanocomposite Synthesis Antimicrobial activity Active packaging application Food safety 

Notes

Acknowledgments

The authors would like to thank to Mr. Nicholas J. Walker for providing language help and writing assistance. Financial support for this research was provided by a doctoral scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527–3532.CrossRefGoogle Scholar
  2. Aghababazadeh, R., Mazinani, B., Mirhabibi, A., & Tamizifar, M. (2006). ZnO nanoparticles synthesised by mechanochemical processing. Journal of Physics Conference Series, 26(1), 312.CrossRefGoogle Scholar
  3. Ahvenainen, R. (Ed.). (2003). Novel food packaging techniques. Cambridge, UK: Woodhead Publishing Limited.Google Scholar
  4. Ajayan, P. M., Schadler, L. S., & Braun, P. V. (Eds.). (2003). Nanocomposite science and technology. Weinheim: Wiley-VCH.Google Scholar
  5. Alvarez-Peral, F. J., Zaragoza, O., Pedreno, Y., & Argüelles, J.-C. (2002). Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology, 148(8), 2599–2606.Google Scholar
  6. Ao, W., Li, J., Yang, H., Zeng, X., & Ma, X. (2006). Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technology, 168(3), 148–151.CrossRefGoogle Scholar
  7. Appendini, P., & Hotchkiss, J. H. (1997). Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packaging Technology and Science, 10(5), 271–279.CrossRefGoogle Scholar
  8. Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R., & Gedanken, A. (2009). Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials, 19(6), 842–852.CrossRefGoogle Scholar
  9. Applerot, G., Perkas, N., Amirian, G., Girshevitz, O., & Gedanken, A. (2009). Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Applied Surface Science, 256(3), S3–S8.CrossRefGoogle Scholar
  10. Arora, A., & Padua, G. W. (2010). Review: nanocomposites in food packaging. Journal of Food Science, 75(1), R43–R49.CrossRefGoogle Scholar
  11. Bhadra, P., Mitra, M. K., Das, G. C., Dey, R., & Mukherjee, S. (2011). Interaction of chitosan capped ZnO nanorods with Escherichia coli. Materials Science and Engineering: C, 31(5), 929–937.CrossRefGoogle Scholar
  12. Bradley EL, Castle L & Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, In Press, Accepted Manuscript, doi:  10.1016/j.tifs.2011.01.002
  13. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870.CrossRefGoogle Scholar
  14. Casey, P. (2006). Nanoparticle technologies and applications. In R. H. J. Hannink & A. J. Hill (Eds.), Nanostructure control of materials (pp. 1–27). Cambridge, UK: Woodhead Publishing Limited.CrossRefGoogle Scholar
  15. CDC (2011) 2011 Estimates of foodborne illness in the United States. Center for Disease Control and Prevention, Atlanta, USA. Available at: http://www.cdc.gov/Features/dsFoodborneEstimates/. Accessed 6 May 2011.
  16. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants: Part A, 25(3), 241–258.CrossRefGoogle Scholar
  17. Cho, J. W., & Paul, D. R. (2001). Nylon 6 nanocomposites by melt compounding. Polymer, 42(3), 1083–1094.CrossRefGoogle Scholar
  18. Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D'Alessio, M., Zambonin, P. G., & Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255–5262.CrossRefGoogle Scholar
  19. De Berardis, B., Civitelli, G., Condello, M., Lista, P., Pozzi, R., Arancia, G., & Meschini, S. (2010). Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicology and Applied Pharmacology, 246(3), 116–127.CrossRefGoogle Scholar
  20. Devirgiliis, C., Murgia, C., Danscher, G., & Perozzi, G. (2004). Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 323(1), 58–64.CrossRefGoogle Scholar
  21. Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742–748.CrossRefGoogle Scholar
  22. Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3–4), 408–413.CrossRefGoogle Scholar
  23. Epand, R. M., & Epand, R. F. (2009). Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1788(1), 289–294.CrossRefGoogle Scholar
  24. Eskandari, M., Haghighi, N., Ahmadi, V., Haghighi, F., & Mohammadi, S. R. (2011). Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass. Physica B: Condensed Matter, 406(1), 112–114.CrossRefGoogle Scholar
  25. FDA (2011) Part 182—substances generally recognized as safe. Food and drug administration, Washington DC, USA. Available at: http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=786bafc6f6343634fbf79fcdca7061e1&rgn=div5&view=text&node=21:3.0.1.1.13&idno=21#21:3.0.1.1.13.9. Accessed 28 March 2011.
  26. Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1–2), 51–70.CrossRefGoogle Scholar
  27. Ghule, K., Ghule, A. V., Chen, B.-J., & Ling, Y.-C. (2006). Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry, 8(12), 1034–1041.CrossRefGoogle Scholar
  28. Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., & Margel, S. (2011). Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374(1–3), 1–8.CrossRefGoogle Scholar
  29. Guo, D., Wu, C., Jiang, H., Li, Q., Wang, X., & Chen, B. (2008). Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 93(3), 119–126.CrossRefGoogle Scholar
  30. Han, J. H. (2005). Antimicrobial packaging systems. In H. H. Jung (Ed.), Innovations in food packaging (pp. 80–107). London: Academic Press.CrossRefGoogle Scholar
  31. He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215.CrossRefGoogle Scholar
  32. Heng, B. C., Zhao, X., Xiong, S., Woei Ng, K., Yin-Chiang Boey, F., & Say-Chye Loo, J. (2010). Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food and Chemical Toxicology, 48(6), 1762–1766.CrossRefGoogle Scholar
  33. Hirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T., & Sugimoto, H. (2010). Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics International, 36(2), 497–506.CrossRefGoogle Scholar
  34. Hoskin, D. W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta: Biomembranes, 1778(2), 357–375.CrossRefGoogle Scholar
  35. Hsiao, I. L., & Huang, Y.-J. (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment, 409(7), 1219–1228.CrossRefGoogle Scholar
  36. Huang, C.-C., Aronstam, R. S., Chen, D.-R., & Huang, Y.-W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology In Vitro, 24(1), 45–55.CrossRefGoogle Scholar
  37. Hütter, G., & Sinha, P. (2001). Proteomics for studying cancer cells and the development of chemoresistance. Proteomics, 1(10), 1233–1248.CrossRefGoogle Scholar
  38. Jalal, R., Goharshadi, E. K., Abareshi, M., Moosavi, M., Yousefi, A., & Nancarrow, P. (2010). ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Materials Chemistry and Physics, 121(1–2), 198–201.CrossRefGoogle Scholar
  39. Jiang, W., Saxena, A., Song, B., Ward, B. B., Beveridge, T. J., & Myneni, S. C. B. (2004). Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir, 20(26), 11433–11442.CrossRefGoogle Scholar
  40. Jin, T., & Gurtler, J. B. (2011). Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. Journal of Applied Microbiology, 110(3), 704–712.CrossRefGoogle Scholar
  41. Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H. J. (2009). Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 74(1), M46–M52.CrossRefGoogle Scholar
  42. Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279(1), 71–76.CrossRefGoogle Scholar
  43. Juzenas, P., Chen, W., Sun, Y.-P., Coelho, M. A. N., Generalov, R., Generalova, N., & Christensen, I. L. (2008). Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 60(15), 1600–1614.CrossRefGoogle Scholar
  44. Kasemets, K., Ivask, A., Dubourguier, H.-C., & Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology In Vitro, 23(6), 1116–1122.CrossRefGoogle Scholar
  45. Koo, J. (2006). Polymer nanocomposites: Processing, characterization, and application. New York, USA: McGraw-Hill.Google Scholar
  46. Kulkarni, S. B., Patil, U. M., Salunkhe, R. R., Joshi, S. S., & Lokhande, C. D. (2011). Temperature impact on morphological evolution of ZnO and its consequent effect on physico-chemical properties. Journal of Alloys and Compounds, 509(8), 3486–3492.CrossRefGoogle Scholar
  47. Lepot, N., Van Bael, M.K., Van den Rul, H., D'Haen, J., Peeters, R., Franco, D., & Mullens, J. (2007). Synthesis of ZnO nanorods from aqueous solution. Materials Letters, 61(13), 2624–2627.Google Scholar
  48. Lepot, N., Van Bael, M. K., Van den Rul, H., D'Haen, J., Peeters, R., Franco, D., & Mullens, J. (2011). Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. Journal of Applied Polymer Science, 120(3), 1616–1623.CrossRefGoogle Scholar
  49. Li, J. H., Hong, R. Y., Li, M. Y., Li, H. Z., Zheng, Y., & Ding, J. (2009). Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Progress in Organic Coatings, 64(4), 504–509.CrossRefGoogle Scholar
  50. Lu, J., Ng, K. M., & Yang, S. (2008). Efficient, one-step mechanochemical process for the synthesis of ZnO nanoparticles. Industrial and Engineering Chemistry Research, 47(4), 1095–1101.CrossRefGoogle Scholar
  51. Nair, S., Sasidharan, A., Divya Rani, V., Menon, D., Nair, S., Manzoor, K., & Raina, S. (2009). Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science. Materials in Medicine, 20, 235–241.CrossRefGoogle Scholar
  52. Nohynek, G. J., Antignac, E., Re, T., & Toutain, H. (2010). Safety assessment of personal care products/cosmetics and their ingredients. Toxicology and Applied Pharmacology, 243(2), 239–259.CrossRefGoogle Scholar
  53. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., & Yang, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2(8), 1–35.Google Scholar
  54. Ohira, T., Yamamoto, O., Iida, Y., & Nakagawa, Z. (2008). Antibacterial activity of ZnO powder with crystallographic orientation. Journal of Materials Science. Materials in Medicine, 19(3), 1407–1412.CrossRefGoogle Scholar
  55. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301.CrossRefGoogle Scholar
  56. Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004.CrossRefGoogle Scholar
  57. Prasad, V., Shaikh, A.J., Kathe, A.A., Bisoyi, D.K., Verma, A.K., & Vigneshwaran, N. (2010). Functional behaviour of paper coated with zinc oxide-soluble starch nanocomposites. Journal of Materials Processing Technology, 210(14), 1962–1967.Google Scholar
  58. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 7(2), 184–192.CrossRefGoogle Scholar
  59. Pujalté, I., Passagne, I., Brouillaud, B., Tréguer, M., Durand, E., Ohayon-Courtès, C., & L'azou, B. (2011). Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology, 8(10), 1–16.Google Scholar
  60. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.CrossRefGoogle Scholar
  61. Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(21), 213902.CrossRefGoogle Scholar
  62. Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., Puoci, F., Vinci, G., & Picci, N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 21(11), 1425–1435.CrossRefGoogle Scholar
  63. Roco, M. C. (1999). Towards a US national nanotechnology initiative. Journal of Nanoparticle Research, 1(4), 435–438.CrossRefGoogle Scholar
  64. Roselli, M., Finamore, A., Garaguso, I., Britti, M. S., & Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. Journal of Nutrition, 133(12), 4077–4082.Google Scholar
  65. Russell, A. D. (2003). Similarities and differences in the responses of microorganisms to biocides. Journal of Antimicrobial Chemotherapy, 52(5), 750–763.CrossRefGoogle Scholar
  66. Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods, 54(2), 177–182.CrossRefGoogle Scholar
  67. Sawai, J., Kojima, H., Ishizu, N., Itoh, M., Igarashi, H., Sawaki, T., & Shimizu, M. (1997). Bactericidal action of magnesium oxide powder. Journal of Inorganic Biochemistry, 67(1–4), 443–443.CrossRefGoogle Scholar
  68. Sawai, J., Shoji, S., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M., & Kojima, H. (1998). Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of Fermentation and Bioengineering, 86(5), 521–522.CrossRefGoogle Scholar
  69. Schirmer, B. C., Heiberg, R., Eie, T., Møretrø, T., Maugesten, T., Carlehøg, M., & Langsrud, S. (2009). A novel packaging method with a dissolving CO2 headspace combined with organic acids prolongs the shelf life of fresh salmon. International Journal of Food Microbiology, 133(1–2), 154–160.CrossRefGoogle Scholar
  70. Schmidt-Mende, L., & MacManus-Driscoll, J. L. (2007). ZnO—nanostructures, defects, and devices. Materials Today, 10(5), 40–48.CrossRefGoogle Scholar
  71. Seven, O., Dindar, B., Aydemir, S., Metin, D., Ozinel, M. A., & Icli, S. (2004). Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara Desert dust. Journal of Photochemistry and Photobiology A: Chemistry, 165(1–3), 103–107.CrossRefGoogle Scholar
  72. Shen, L., Bao, N., Yanagisawa, K., Domen, K., Gupta, A., & Grimes, C. A. (2006). Direct synthesis of ZnO nanoparticles by a solution-free mechanochemical reaction. Nanotechnology, 17(20), 5117.CrossRefGoogle Scholar
  73. Shi, L., Zhou, J., & Gunasekaran, S. (2008). Low temperature fabrication of ZnO—whey protein isolate nanocomposite. Materials Letters, 62(28), 4383–4385.CrossRefGoogle Scholar
  74. Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766–1782.CrossRefGoogle Scholar
  75. Simoncic, B., & Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles—a review. Textile Research Journal, 80(16), 1721–1737.CrossRefGoogle Scholar
  76. Soares, N. F. F., Silva, C. A. S., Santiago-Silva, P., Espitia, P. J. P., Gonçalves, M. P. J. C., Lopez, M. J. G., Miltz, J., Cerqueira, M. A., Vicente, A. A., Teixeira, J., Silva, W. A., & Botrel, D. A. (2009). Active and intelligent packaging for milk and milk products. In J. S. R. Coimbra & J. A. Teixeira (Eds.), Engineering aspects of milk and dairy products (pp. 155–174). New York, USA: CRC Press Taylor & Francis Group.Google Scholar
  77. Sonohara, R., Muramatsu, N., Ohshima, H., & Kondo, T. (1995). Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophysical Chemistry, 55(3), 273–277.CrossRefGoogle Scholar
  78. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84–95.CrossRefGoogle Scholar
  79. Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686.CrossRefGoogle Scholar
  80. Swihart, M. T. (2003). Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 8(1), 127–133.CrossRefGoogle Scholar
  81. Thostenson, E. T., Li, C., & Chou, T.-W. (2005). Nanocomposites in context. Composites Science and Technology, 65(3–4), 491–516.CrossRefGoogle Scholar
  82. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235–245.CrossRefGoogle Scholar
  83. Vicentini, D. S., Smania, A., Jr., & Laranjeira, M. C. M. (2010). Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Materials Science and Engineering: C, 30(4), 503–508.CrossRefGoogle Scholar
  84. Wang, H., Wick, R. L., & Xing, B. (2009). Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution, 157(4), 1171–1177.CrossRefGoogle Scholar
  85. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77(7), 2325–2331.CrossRefGoogle Scholar
  86. Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643–646.CrossRefGoogle Scholar
  87. Yang, R., Christensen, P. A., Egerton, T. A., & White, J. R. (2010). Degradation products formed during UV exposure of polyethylene-ZnO nano-composites. Polymer Degradation and Stability, 95(9), 1533–1541.CrossRefGoogle Scholar
  88. Zak, A.K., Majid, W.H.A., Darroudi, M., & Yousefi, R. (2011). Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Materials Letters, 65(1), 70–73Google Scholar
  89. Zhang, H., Chen, B., Jiang, H., Wang, C., Wang, H., & Wang, X. (2011). A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials, 32(7), 1906–1914.CrossRefGoogle Scholar
  90. Zhang, L., Ding, Y., Povey, M., & York, D. (2008). ZnO nanofluids—a potential antibacterial agent. Progress in Natural Science, 18(8), 939–944.CrossRefGoogle Scholar
  91. Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479–489.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paula Judith Perez Espitia
    • 1
  • Nilda de Fátima Ferreira Soares
    • 1
    Email author
  • Jane Sélia dos Reis Coimbra
    • 1
  • Nélio José de Andrade
    • 1
  • Renato Souza Cruz
    • 2
  • Eber Antonio Alves Medeiros
    • 1
  1. 1.Food Technology DepartmentFederal University of ViçosaViçosaBrazil
  2. 2.Food Technology DepartmentState University of Feira de SantanaFeira de SantanaBrazil

Personalised recommendations