Food and Bioprocess Technology

, Volume 6, Issue 9, pp 2555–2561 | Cite as

The Effects of Subcritical Water Treatment on Antioxidant Activity of Golden Oyster Mushroom

  • Eun-Kyung Jo
  • Da-Jung Heo
  • Jeong-Han Kim
  • Yun-Hae Lee
  • Young-Cheoul Ju
  • Seung-Cheol Lee


Subcritical water (SCW) extraction of golden oyster mushroom (GOM) was carried out at various temperatures (50, 100, 150, 200, 250, and 300 °C) for 10, 30, and 60 min, and the antioxidant and certain physiological activities of the extracts were evaluated. SCW treatment of GOM increased the antioxidant activity of the extracts. The SCW extraction of GOM at 250 °C for 60 min or 300 °C for 30 min showed relatively high levels of total phenolic content, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and reducing power. The β-glucan content was the highest when SCW extraction was carried at 200 °C for 60 min, while the highest 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging activity occurred at 300 °C for 60 min. These results indicate that the temperature and time of SCW extraction significantly affect the antioxidant activity as well as the nutraceutical compound levels of GOM extracts.


Golden oyster mushroom Subcritical water extraction Antioxidant activity β-Glucan 



This study is supported by a research grant from Kyungnam University, Korea, in 2011.


  1. Arano, M. B., Cano, A., Hernandez-Ruiz, J., Garcia-Canovas, F., & Acosta, M. (1996). Inhibition by l-ascorbic acid and other antioxidants of the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: A new approach for determining total antioxidant status of foods. Analytical Biochemistry, 236, 255–261.CrossRefGoogle Scholar
  2. Baek, J. Y., Lee, J. M., & Lee, S. C. (2008). Extraction of nutraceutical compounds from licorice roots with subcritical water. Separation and Purification Technology, 63, 661–664.CrossRefGoogle Scholar
  3. Flander, L., Salmenkallio-Marttila, M., Suortti, T., & Autio, K. (2007). Optimisation of ingredients and baking process for improved wholemeal oat bread quality. LWT- Food Science and Technology, 40, 860–870.CrossRefGoogle Scholar
  4. Gil-Izquierdo, A., Gil, M. I., & Ferreres, F. (2002). Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. Journal of Agricultural and Food Chemistry, 50, 5107–5114.CrossRefGoogle Scholar
  5. Gutfinger, T. (1981). Polyphenols in olive oils. Journal of the American Oil Chemists' Society, 58, 966–968.CrossRefGoogle Scholar
  6. Hagiwara, S., Takahashi, M., Shen, Y., Kaihou, S., Tomiyama, T., Yazawa, M., et al. (2005). A phytochemical in the edible tamogi-take mushroom (Pleurotus cornucopiae), d-mannitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry, 69, 1603–1605.CrossRefGoogle Scholar
  7. Hassas-Roudsari, M., Chang, P. R., Pegg, R. B., & Tyler, R. T. (2009). Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chemistry, 114, 717–726.CrossRefGoogle Scholar
  8. Hatano, T., Edamatsu, R., More, A., Fujita, Y., & Yasuhara, E. (1989). Effect of interaction of tannins with co-existing substances VI. Effects of tannins and related polyphenols on superoxide anion radical and on DPPH radical. Chemical and Pharmaceutical Bulletin, 37, 2016–2021.CrossRefGoogle Scholar
  9. Herrero, M., Cifuentes, A., & Ibáñez, E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. Food Chemistry, 98, 136–148.CrossRefGoogle Scholar
  10. Hu, S. H., Liang, Z. C., Chia, Y. C., Lien, J. L., Chen, K. S., Lee, M. Y., et al. (2006). Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus. Journal of Agricultural and Food Chemistry, 54, 2103–2110.CrossRefGoogle Scholar
  11. Jang, J. H., Jeong, S. C., Kim, J. H., Lee, Y. H., Ju, Y. C., & Lee, J. S. (2011). Characterization of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chemistry, 127, 412–418.CrossRefGoogle Scholar
  12. Jayakumar, T., Ramesh, E., & Geraldine, P. (2006). Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chemistry and Toxicology, 44, 1989–1996.CrossRefGoogle Scholar
  13. Jeong, S. M., Kim, S. Y., Kim, D. R., Jo, S. C., Nam, K. C., Ahn, D. U., et al. (2004). Effect of heat treatment on the antioxidant activity of citrus peels. Journal of Agricultural and Food Chemistry, 52, 3389–3393.CrossRefGoogle Scholar
  14. Khiari, Z., Makris, D. P., & Kefalas, P. (2009). An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and Bioprocess Technology, 2, 337–343.CrossRefGoogle Scholar
  15. Kim, J. H., Kim, S. J., Park, H. R., Choi, J. I., Ju, Y. C., Nam, K. C., et al. (2009a). The different antioxidant and anticancer activities depending on the color of oyster mushrooms. Journal of Medicinal Plants Research, 3, 1016–1020.Google Scholar
  16. Kim, J. W., Nagaoka, T., Ishida, Y., Hasegawa, T., Kitagawa, K., & Lee, S. C. (2009b). Subcritical water extraction of nutraceutical compounds from citrus pomaces. Separation Science and Technology, 44, 2598–2608.CrossRefGoogle Scholar
  17. Kogan, G., Staško, A., Bauerová, K., Polovka, M., Šoltés, L., Brezová, V., et al. (2005). Antioxidant properties of yeast (1→3)-β-d-glucan studied by electron paramagnetic resonance spectroscopy and its activity in the adjuvant arthritis. Carbohydrate Polymers, 61, 18–28.CrossRefGoogle Scholar
  18. Lee, S. C., Jeong, S. M., Kim, S. Y., Park, H. R., Nam, K. C., & Ahn, D. U. (2006). Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. Food Chemistry, 94, 489–493.CrossRefGoogle Scholar
  19. Lee, Y. L., Huang, G. W., Liang, Z. C., & Mau, J. L. (2007). Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT- Food Science and Technology, 40, 823–833.CrossRefGoogle Scholar
  20. Lee, J. S., Oka, K., Watanabe, O., Hara, H., & Ishizuka, S. (2011). Immunomodulatory effect of mushrooms on cytotoxic activity and cytokine production of intestinal lamina propria leukocytes does not necessarily depend on β-glucan contents. Food Chemistry, 126, 1521–1526.CrossRefGoogle Scholar
  21. Liu, J., Sun, Y., Yu, H., Zhang, C., Yue, L., Yang, X., et al. (2012). Purification and identification of one glucan from golden oyster mushroom (Pleurotus citrinopileatus (Fr.) Singer). Carbohydrate Polymers, 87, 348–352.CrossRefGoogle Scholar
  22. Meir, S., Kanner, J., Akiri, B., & Hadas, S. P. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43, 1813–1819.CrossRefGoogle Scholar
  23. Minato, K. K. (2008). Immunomodulation activity of a polysaccharide fraction of a culinary–medicinal mushroom, Pleurotus citrinopileatus Singer (Agaricomycetideae), in vitro. International Journal of Medicinal Mushrooms, 10, 235–244.CrossRefGoogle Scholar
  24. Niwa, Y., & Miyachi, Y. (1986). Antioxidant action of natural health products and Chinese herbs. Inflammation, 10, 79–91.CrossRefGoogle Scholar
  25. Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Journal of Japan Nutrition, 44, 307–315.CrossRefGoogle Scholar
  26. Peleg, H., Naim, M., Rouseff, R. L., & Zehavi, U. (1991). Distribution of bound and free phenolic acids in oranges (Citrus sinensis) and grapefruit (Citrus paradisi). Journal of the Science of Food and Agriculture, 57, 417–426.CrossRefGoogle Scholar
  27. Rodriguez-Meizoso, I., Jaime, L., Santoyo, S., Señorans, F. J., Cifuentes, A., & Ibañez, E. (2010). Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluviales microalga. Journal of Pharmaceutical and Biomedical Analysis, 51, 456–463.CrossRefGoogle Scholar
  28. Rop, O., Mlcek, J., & Jurikova, T. (2009). Beta-glucan in higher fungi and their health effects. Nutrition Review, 67, 624–631.CrossRefGoogle Scholar
  29. Rostagno, M. A., Villares, A., Guillamón, E., García-Lafuente, A., & Martinez, J. A. (2009). Sample preparation for the analysis of isoflavones from soybeans and soy foods. Journal of Chromatography. A, 1216, 2–29.CrossRefGoogle Scholar
  30. Seo, H. K., & Lee, S. C. (2010). Antioxidant activity of subcritical water extracts from Chaga mushroom (Inonotus obliquus). Separation Science and Technology, 45, 198–203.CrossRefGoogle Scholar
  31. Thondre, P. S., Ryan, L., & Henry, C. J. K. (2011). Barley β-glucan extracts as rich sources of polyphenols and antioxidants. Food Chemistry, 126, 72–77.CrossRefGoogle Scholar
  32. Tiwari, U., Cummins, E., Sullivan, P., Flaherty, J. O., Brunton, N., & Gallagher, E. (2011). Probabilistic methodology for assessing changes in the level and molecular weight of barley β-glucan during bread baking. Food Chemistry, 124, 1567–1576.CrossRefGoogle Scholar
  33. Tomiyama, T., Kaihou, S., Ishida, M., Nishikawa, H., Yamazaki, N., Tsuji, K., et al. (2008). The water retention effects and action for atopic dermatitis-like symptoms of ethyl alcohol extract (from tamogi-take mushroom) on animal model of atopic dermatitis. Journal of Japan Society Nutrition Food Science, 61, 21–26.CrossRefGoogle Scholar
  34. Wiboonsirikul, J., & Adachi, S. (2008). Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Science and Technology Research, 14, 319–328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Eun-Kyung Jo
    • 1
  • Da-Jung Heo
    • 1
  • Jeong-Han Kim
    • 2
  • Yun-Hae Lee
    • 2
  • Young-Cheoul Ju
    • 2
  • Seung-Cheol Lee
    • 1
  1. 1.Department of Food Science and BiotechnologyKyungnam UniversityChangwonRepublic of Korea
  2. 2.Mushroom Research InstituteGyeonggido Agricultural Research and Extension ServicesGwangjuRepublic of Korea

Personalised recommendations