Food and Bioprocess Technology

, Volume 5, Issue 6, pp 2046–2057 | Cite as

Review of Current Technologies for Reduction of Salmonella Populations on Almonds

  • Zhongli Pan
  • Gokhan Bingol
  • Maria T. Brandl
  • Tara H. McHugh
Review Paper


After the 2001 and 2004 Salmonellosis outbreaks that were associated with raw almonds, ensuring the microbial safety of almonds by treating them to achieve a minimum 4-log reduction of Salmonella population became mandatory in California, the world’s largest almond producer. In this paper, we summarize potential pathways of microbial contamination during almond production and manufacturing. Furthermore, we review sanitization technologies, including chemical, thermal, and non-thermal methods, as well as proprietary systems with regard to microbial and sensory quality of almonds and compare various aspects of their use during almond processing.


Nuts Salmonellosis Foodborne diseases Pasteurization Contamination Outbreaks 


  1. ABC (2007). Guidelines for Validation of Dry Roasting Processes. Available at: Accessed 12 July 2011.
  2. ABC (2008). Guidelines for Validation of Propylene Oxide Pasteurization. Almond Board of California. Available at: Accessed 15 June 2011.
  3. ABC (2010a). The 2010 Almond Almanac. Available at: Accessed 7 February 2011.
  4. ABC (2010b). The Food Safety Program & Almond Pasteurization. Available at: Accessed 19 April 2011.
  5. ABC (2011). California almonds. Almond Board of California, Available at: Accessed 25 August 2011.
  6. Aeita, E. M., & Berg, J. D. (1986). A review of chlorine dioxide in drinking water treatment. Journal of American Water Works Association, 78, 62–72.Google Scholar
  7. Anon (2009). Salmonella in pistachio nuts, 2009. Available at: Accessed 23 March 2011.
  8. Anon (2011a). Guidelines for almond storage. Available at: Accessed 1 September 2011.
  9. Anon (2011b). Title 40: Protection of Environment, Part 180—Tolerances and exemptions for the pesticide chemical residues in food. Available at: Accessed 16 June 2011.
  10. Barbosa-Canovas, G. V., Pothakamury, U. R., Palou, E., & Swanson, B. G. (1998). Nonthermal preservation of foods. New York: Marcel Dekker.Google Scholar
  11. Bari, L., Nei, D., Sotome, I., Nishina, I. Y., Isobe, S., & Kawamoto, S. (2009). Effectiveness of sanitizers, dry heat, hot water, and gas catalytic infrared heat treatments to inactivate Salmonella on almonds. Foodborne Pathogens and Disease, 6(8), 953–958.CrossRefGoogle Scholar
  12. Bari, L., Nei, D., Sotome, I., Nishina, I. Y., Hayakawa, F., Isobe, S., et al. (2010). Effectiveness of superheated steam and gas catalytic infrared heat treatments to inactivate Salmonella on raw almonds. Foodborne Pathogens and Disease, 7(7), 1–6.CrossRefGoogle Scholar
  13. Bell, C., & Kyriakides, A. (2002). Salmonella: a practical approach to the organism and its control in foods. USA: Blackwell-Science.Google Scholar
  14. Benarde, M. A., Snow, W. B., Olivieri, V. P., & Davidson, B. (1967). Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Applied Microbiology, 15(2), 257–265.Google Scholar
  15. Bermudez-Aguirre, D, & Corradini, M. G. (2011). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Research International. doi: 10.1016/j.foodres.2011.05.040.
  16. Bingol, G., Yang, J., Brandl, M. T., Pan, Z., Wang, H., & McHugh, T. H. (2011). Infrared pasteurization of raw almonds. Journal of Food Engineering, 104, 387–393.CrossRefGoogle Scholar
  17. Brandl, M. T., Pan, Z., Huynh, S., & McHugh, T. H. (2008). Reduction of Salmonella enteritidis population sizes on almond kernels with infrared heat. Journal of Food Protection, 71, 153–158.Google Scholar
  18. Brockmann, S. O., Piechotowski, I., & Kimmig, P. (2004). Salmonella in sesame seed products. Journal of Food Protection, 67(1), 178–180.Google Scholar
  19. Burnett, S. L., Gehm, E. R., Weissinger, W. R., & Beuchat, L. R. (2000). Survival of Salmonella in peanut butter and peanut butter spread. Journal of Applied Microbiology, 89(3), 472–477.CrossRefGoogle Scholar
  20. CDC: Centers for Disease Control and Prevention. (1982). Outbreak of Salmonella oranienburg infection—Norway. Morbidity and Mortality Weekly Report, 31, 655–656.Google Scholar
  21. CDC: Centers for Disease Control and Prevention (2004). Outbreak of Salmonella Serotype Enteritidis Infections Associated with Raw Almonds—United States and Canada, 2003–2004. Morbidity and Mortality Weekly Report, 53(22), 484–487. Available at: Accessed 28 July 2011.
  22. Chang, S.-S., Han, A. R., Reyes-De-Corcuera, J. I., Powers, J. R., & Kang, D.-H. (2010). Evaluation of steam pasteurization in controlling Salmonella serotype Enteritidis on raw almond surfaces. Letters in Applied Microbiology, 50(4), 393–398.CrossRefGoogle Scholar
  23. Corry, J. E. L., James, S. J., Purnell, G., Barbedo-Pinto, C. S., Chochois, Y., Howell, M., et al. (2007). Surface pasteurization of chicken carcasses using hot water. Journal of Food Engineering, 79, 913–919.CrossRefGoogle Scholar
  24. Critzer, F. J., Kelly-Wintenberg, K., South, S. L., & Golden, D. A. (2007). Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. Journal of Food Protection, 70(10), 2290–2296.Google Scholar
  25. Da Silva, F. V. M., & Gibbs, P. A. (2009). Principles of thermal processing: pasteurization. In Simpson (Ed.), Engineering aspects of thermal food processing (pp. 13–49). Boca Raton: Taylor & Francis.Google Scholar
  26. Danyluk, M. D., Uesugi, A. R., & Harris, L. J. (2005). Survival of Salmonella Enteritidis PT 30 on inoculated almonds after commercial fumigation with propylene oxide. Journal of Food Protection, 68, 1613–1622.Google Scholar
  27. Danyluk, M. D., Harris, L. J., & Schaffner, D. W. (2006). Monte Carlo simulations assessing the risk of salmonellosis from consumption of almonds. Journal of Food Protection, 69(7), 1594–1599.Google Scholar
  28. Danyluk, M. D., Jones, T. M., Abd, S. J., Schlitt-Dittrich, F., Jacobs, M., & Harris, L. J. (2007). Prevalence and amounts of Salmonella found on raw California almonds. Journal of Food Protection, 70(4), 820–827.Google Scholar
  29. Danyluk, M. D., Brandl, M. T., & Harris, L. J. (2008a). Migration of Salmonella Enteritidis Phage Type 30 through almond hulls and shells. Journal of Food Protection, 71(2), 397–401.Google Scholar
  30. Danyluk, M. D., Nozawa-Inoue, M., Hristova, K. R., Scow, K. M., Lampinen, B., & Harris, L. J. (2008b). Survival and growth of Salmonella Enteritidis PT 30 in almond orchard soils. Journal of Applied Microbiology, 104, 1391–1399.CrossRefGoogle Scholar
  31. Deng, S., Ruan, R., Mok, C. K., Huang, G., Lin, X., & Chen, P. (2007). Inactivation of Escherichia coli on almonds using nonthermal plasma. Journal of Food Science, 72(2), M62–M66.CrossRefGoogle Scholar
  32. Dibben, D. (2001). Electromagnetics: fundamental aspects and numerical modeling. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 1–32). New York: Marcel Dekker.Google Scholar
  33. Doyle, M. E., & Mazzotta, A. S. (2000). Review of studies on the thermal resistance of Salmonellae. Journal of Food Protection, 63(6), 779–795.Google Scholar
  34. Du, W.-X., Danyluk, M. D., & Harris, L. J. (2007). Evaluation of cleaning treatments for almond-contact surfaces in hulling and shelling facilities. Food Protection Trends, 27(9), 678–683.Google Scholar
  35. Du, W.-X., Abd, S. J., McCarthy, K. L., & Harris, L. J. (2010). Reduction of Salmonella on inoculated almonds exposed to hot oil. Journal of Food Protection, 73(7), 1238–1246.Google Scholar
  36. EPA (2011a). Almond Processing. United States Environmental Protection Agency, Available at: Accessed 13 July 2011.
  37. EPA (2011b). Chlorine dioxide. Available at Accessed 15 December 2011.
  38. Federal Register (2007). Almonds grown in California; outgoing quality control requirements. Federal Register, 72(61), 15021–15036. Available at: Accessed 17 February 2011.
  39. Fernandez, A., & Thompson, A. (2011). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International. doi: 10.1016/j.foodres.2011.04.009.
  40. Gao, M., Tang, J., Villa-Rojas, R., Wang, Y., & Wang, S. (2011). Pasteurization process development for controlling Salmonella in in-shell almonds using radio frequency energy. Journal of Food Engineering, 104, 299–306.CrossRefGoogle Scholar
  41. Ginzberg, A. S. (1969). Application of infrared radiation in food processing. London: Leonard Hill.Google Scholar
  42. Goodridge, L. D., Willford, J., & Kalchayanand, N. (2006). Destruction of Salmonella Enteritidis inoculated onto raw almonds by high hydrostatic pressure. Food Research International, 39, 408–412.CrossRefGoogle Scholar
  43. Gunawardena, R. M., & Weng, Z. (2006). Dry food pasteurization apparatus and method. United States Patent Application Publication, US 2006/0040029 A1.Google Scholar
  44. Harris, L. J., Uesugi, A. R., Abd, S. J., & McCarthy, K. L. (2011). Survival of Salmonella Enteritidis PT 30 on inoculated almond kernels in hot water treatments. Food Research International. doi: 10.1016/j.foodres.2011.03.048.
  45. Himmelfarb, P., El-Bisi, H. M., Read, R. B., & Litsky, W. (1962). Effect of relative humidity on the bactericidal activity of propylene oxide vapor. Applied Microbiology, 10, 431–435.Google Scholar
  46. Huang, G. (2008). Mandatory Pasteurization of Almonds. Presented at the University of California, Davis, CA March 2006.Google Scholar
  47. Isaacs, S., Aramini, J., Ciebin, B., Farrar, J. A., Ahmed, R., Middleton, D., et al. (2005). An international outbreak of salmonellosis associated with raw almonds contaminated with a rare phage type of Salmonella Enteritidis. Journal of Food Protection, 68, 191–198.Google Scholar
  48. Jeong, S., Marks, B. P., & Orta-Ramirez, A. (2009). Thermal inactivation kinetics for Salmonella Enteritidis PT30 on almonds subjected to moist-air convection heating. Journal of Food Protection, 72(8), 1602–1609.Google Scholar
  49. Kester, D. E., Kader, A. A., & Cunningham, S. (2003). Almonds. Encyclopedia of Food Sciences and Nutrition, 150–155.Google Scholar
  50. King, A. D., Jo Miller, M., & Eldridge, L. C. (1970). Almond harvesting, processing and microbial flora. Applied Microbiology, 20(2), 208–214.Google Scholar
  51. Lambertini, E., Danyluk, M. D., Schaffner, D. W., Winter, C. K., & Harris, L. J. (2011). Risk of salmonellosis from consumption of almonds in North American market. Food Research International. doi: 10.1016/j.foodres.2011.05.039.
  52. Lee, S.-Y., Oh, S.-W., Chung, H.-J., Reyes-De-Corcuera, J. I., Powers, J. R., & Kang, D.-H. (2006). Reduction of Salmonella Enteritidis on the surface of raw shelled almonds by exposure to steam. Journal of Food Protection, 69(3), 591–595.Google Scholar
  53. Lehmacher, A., Bockemuhl, J., & Aleksic, S. (1995). Nationwide outbreak of human salmonellosis in Germany due to contaminated paprika and paprika-powdered potato chips. Epidemiology and Infection, 115(3), 501–511.CrossRefGoogle Scholar
  54. Little, C. L., Rawal, N., de Pinna, E., & McLauchlin, J. (2010). Survey of Salmonella contamination of edible nut kernels on retail sale in the UK. Food Microbiology, 27, 171–174.CrossRefGoogle Scholar
  55. Long, D., Wilkey, J., & Jahn, C. I. (2006). Apparatus and process for reducing microbial contamination of nuts. United States Patent Application Publication, US 2006/0147594 A1.Google Scholar
  56. Mahmoud, B. S. M., Bhagat, A. R., & Linton, R. H. (2007). Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. Food Microbiology, 24, 736–744.CrossRefGoogle Scholar
  57. Mattick, K. L., Jorgensen, F., Legan, J. D., Lappin-Scott, H. M., & Humphrey, T. J. (2000). Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance. Applied Environmental Microbiology, 66, 4921–4925.CrossRefGoogle Scholar
  58. Metaxas, A. C., & Meredith, R. J. (1998). Industrial microwave heating. In A. T. Johns, G. Ratcliff, & J. R. Platss (Eds.), Peter Peregrinus, London.Google Scholar
  59. Morgan, A. I., Goldberg, N., Radewonuk, E. R., & Scullen, O. J. (1996). Surface pasteurization of raw poultry meat by steam. LWT, 29, 447–451.CrossRefGoogle Scholar
  60. Nanos, G. D., Kazantzis, I., Kefalas, P., Petrakis, C., & Stavroulakis, G. G. (2002). Irrigation and harvest time affect almond kernel quality and composition. Scientia Horticulturae, 96, 249–256.CrossRefGoogle Scholar
  61. Niemira, B. A., & Gutsol, A. (2011). Nonthermal plasma as a novel food processing technology. In H. Q. Zhang, G. V. Barbosa-Canova, V. M. Balasubramaniam, C. P. Dunne, D. F. Farkas, & J. T. C. Yuan (Eds.), Nonthermal processing technologies for food (pp. 272–288). Ames: Wiley-Blackwell.Google Scholar
  62. Pao, S., Kalantari, A., & Huang, G. (2006). Utilizing acidic sprays for eliminating Salmonella enterica on raw almonds. JFS: Food Microbiology and Safety, 71(1), M14–M19.Google Scholar
  63. Podolak, R., Enache, E., Stone, W., Black, D. G., & Elliott, P. H. (2010). Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73(10), 1919–1936.Google Scholar
  64. Prakash, A., Lim, F. T., Duong, C., Caporaso, F., & Foley, D. (2010). The effects of ionizing irradiation on Salmonella inoculated on almonds and changes in sensory properties. Radiation Physics and Chemistry, 79, 502–506.CrossRefGoogle Scholar
  65. Ransom, G. (2006). Supplement—Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Journal of Food Protection, 69(5), 1190–1216.Google Scholar
  66. Ravishankar, S., & Juneja, V. K. (2003). Adaptation or resistance responses of microorganisms to stresses in the food processing environment. In A. E. Yousef & V. K. Juneja (Eds.), Microbial stress adaptation and food safety (pp. 105–158). Boca Raton: CRC.Google Scholar
  67. Riyaz-Ul-Hassan, S., Verma, V., Malik, A., & Qazi, G. N. (2003). Microbiological quality of walnut kernels and apple juice concentrate. World Journal of Microbiology and Biotechnology, 19, 845–850.CrossRefGoogle Scholar
  68. Sakai, N., & Mao, W. (2006). Infrared heating. In Sun (Ed.), Thermal food processing: new technologies and quality issues (pp. 493–526). Boca Raton: Taylor & Francis.Google Scholar
  69. Sanchez-Bela, P., Egea, I., Romojaro, F., & Martinez-Madrid, M. C. (2008). Sensorial and chemical quality of electron beam irradiated almonds (Prunus amygdalus). LWT, 41, 442–449.CrossRefGoogle Scholar
  70. Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Fujisawa, M., Kokugan, T., et al. (1997). Pasteurization of bacterial spores in liquid medium by far-infrared irradiation. Journal of Chemical Engineering of Japan, 30, 170–172.CrossRefGoogle Scholar
  71. Seymour, I. J. (2003). Surface preservation for fruits and vegetables. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 240–257). New York: Kluwer.Google Scholar
  72. Singh, N., Singh, R. K., Bhunia, A. K., & Stroshine, R. L. (2002). Efficacy of chlorine dioxide, ozone and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. LWT, 35, 720–729.CrossRefGoogle Scholar
  73. Trinetta, V., Morgan, M. T., & Linton, R. H. (2010). Use of high-concentration-short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes. Food Microbiology, 27, 1009–1015.CrossRefGoogle Scholar
  74. Uesugi, A. R., & Harris, L. J. (2006). Growth of Salmonella Enteritidis phage type 30 in almond hull and shell slurries and survival in drying almond hulls. Journal of Food Protection, 69(4), 712–718.Google Scholar
  75. Uesugi, A. R., Danyluk, M. R., & Harris, L. J. (2006). Survival of Salmonella Enteritidis Phage Type 30 on inoculated almonds stored at −20, 4, 23 and 35°C. Journal of Food Protection, 69(8), 1851–1857.Google Scholar
  76. Uesugi, A. R., Danyluk, M. D., Mandrell, R. E., & Harris, L. J. (2007). Isolation of Salmonella Enteritidis Phage Type 30 from a single almond orchard over a 5-year period. Journal of Food Protection, 70(8), 1784–1789.Google Scholar
  77. Vij, V., Ailes, E., Wolyniak, C., Angulo, F. J., & Klontz, K. C. (2006). Recalls of spices due to bacterial contamination monitored by the U.S. Food and Drug Administration: the predominance of salmonellae. Journal of Food Protection, 69, 233–237.Google Scholar
  78. Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57, 257–268.CrossRefGoogle Scholar
  79. Weissinger, W. R., & Beuchat, L. R. (2000). Comparison of aqueous chemical treatments to eliminate Salmonella on Alfalfa seeds. Journal of Food Protection, 63(11), 1475–1482.Google Scholar
  80. WHO (2007). Food safety and foodborne illness. World Health Organization, Fact sheet N237. Available at: Accessed 9 June 2011.
  81. Whyte, P., McGill, K., & Collins, J. D. (2003). An assessment of steam pasteurization and hot water immersion treatments for the microbiological decontamination of broiler carcasses. Food Microbiology, 20, 11–117.CrossRefGoogle Scholar
  82. Wihodo, M., Han, Y., Selby, T. L., Lorcheim, P., Czarneski, M., Huang, G., & Linton, R. H. (2005). Decontamination of raw almonds using chlorine dioxide gas (abstract). Institute of Food Technologist Annual Meeting, New Orleans, LA, July 15–20.Google Scholar
  83. Willford, J., Mendonca, A., & Goodridge, L. D. (2008). Water pressure effectively reduces Salmonella enterica serovar Enteritidis on the surface of raw almonds. Journal of Food Protection, 71, 825–829.Google Scholar
  84. Yang, J., Bingol, G., Pan, Z., Brandl, M. T., McHugh, T. H., & Wang, H. (2010). Infrared heating for improved safety and processing efficiency of dry-roasted almonds. Journal of Food Engineering, 101, 273–280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Zhongli Pan
    • 1
    • 2
  • Gokhan Bingol
    • 1
  • Maria T. Brandl
    • 3
  • Tara H. McHugh
    • 1
  1. 1.Processed Foods Research Unit, Western Regional Research Center, Agricultural Research ServiceUS Department of AgricultureAlbanyUSA
  2. 2.Department of Biological and Agricultural EngineeringUniversity of California DavisDavisUSA
  3. 3.Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research ServiceUS Department of AgricultureAlbanyUSA

Personalised recommendations