Food and Bioprocess Technology

, Volume 6, Issue 4, pp 1067–1081 | Cite as

Optimization of Factors Affecting Extraction of Antioxidants from Mango Seed

  • Eva Dorta
  • M. Gloria Lobo
  • Mónica GonzálezEmail author
Original Paper


A microwave-assisted extraction procedure was developed to obtain extracts rich in antioxidants from mango seed. Central composite design ‘25 + star’ and response surface methodology were used in order to optimise the extraction factors: the water content in the acetone/water mixture used as extractant, seed weight-to-solvent volume ratio, number of steps, extraction time and pH of water. The results suggest that the extractant composition and the seed weight-to-solvent volume ratio were statistically the most significant factors. The optimum values of the factors that influence the capacity to inhibit lipid peroxidation (evaluated with the β-carotene bleaching test), scavenge 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid-free radicals and obtain extracts with high phenolic compound content (tannins and proanthocyanidins) were three steps; the mixture acetone/water (50:50, v/v) as extractant, a seed weight-to-solvent volume ratio of 1:30 (w/v), an extraction time of 0 min in the microwave (the rest of the extraction process includes homogenisation and centrifugation time), and a pH of 8.0.


Mangifera indica L. biowastes Microwave-assisted extraction Response surface methodology Lipid peroxidation inhibition Free radicals scavenging Phenolic compounds 



The Spanish “Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria” (INIA) awarded E. Dorta a PhD INIA grant. This research was supported through the R&D RTA2006-00187 project, also financed by the INIA.


  1. Abdalla, A. E. M., Darwish, S., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134–1140.CrossRefGoogle Scholar
  2. Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73, 239–244.CrossRefGoogle Scholar
  3. Barreto, J. C., Trevisan, M. T. S., Hull, W. E., Erben, G., de Brito, E. S., Pfundstein, B., Würtele, G., Spiegelhalder, B., & Owen, R. W. (2008). Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). Journal of Agricultural and Food Chemistry, 56, 5599–5610.CrossRefGoogle Scholar
  4. Berardini, N., Carle, R., & Schieber, A. (2004). Characterization of gallotannins and benzophenone derivatives from mango (Mangifera indica L. cv. Tommy Atkins) peels, pulp and kernels by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 2208–2216.CrossRefGoogle Scholar
  5. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.CrossRefGoogle Scholar
  6. Commission of the European Communities. (2000). White Paper on Food Safety COM (1999) 719 Final. Brussels: Commission of the European Communities.Google Scholar
  7. Dorta, E., Lobo, M. G., & González, M. (2011). Reutilization of mango by-products: Study of the effect of extraction solvent and temperature on their antioxidant properties. Journal of Food Science. doi: 10.1111/j.1750-3841.2011.02477.x.
  8. Dorta, E., Lobo, M. G., & González, M. (2012). Using drying treatments to stabilise mango peel and seed: effect on antioxidant activity. LWT- Food Science and Technology, 45, 261–268.CrossRefGoogle Scholar
  9. Engels, C., Knödler, M., Zhao, Y. Y., Carle, R., Gänzle, M. G., & Schieber, A. (2009). Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. Journal of Agricultural and Food Chemistry, 57, 7712–7718.CrossRefGoogle Scholar
  10. Engels, C., Gänzle, M. G., & Schieber, A. (2010). Fractionation of gallotannins from mango (Mangifera indica L.) kernels by high-speed counter-current chromatography and determination of their antibacterial activity. Journal of Agricultural and Food Chemistry, 58, 775–780.CrossRefGoogle Scholar
  11. FAO/IAEA. (2000). Quantification of tannins in tree foliage. Vienna: Joint FAO/IAEA Division of Nuclear Techniques in food and Agriculture.Google Scholar
  12. González, M., & González, V. (2010). Sample preparation of tropical and subtropical fruit biowastes to determine antioxidant phytochemicals. Analytical Methods, 2, 1842–1866.CrossRefGoogle Scholar
  13. González-Montelongo, R., Lobo, M. G., & González, M. (2010a). The effect of extraction temperature, time and number of steps on the antioxidant capacity of methanolic banana peel extracts. Separation and Purification Technology, 71, 347–355.CrossRefGoogle Scholar
  14. González-Montelongo, R., Lobo, M. G., & González, M. (2010b). Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chemistry, 119(3), 1030–1039.CrossRefGoogle Scholar
  15. Kabuki, T., Nakajima, H., Arai, M., Ueda, S., Kuwabara, Y., & Dosako, S. (2000). Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) kernel seeds. Food Chemistry, 71, 61–66.CrossRefGoogle Scholar
  16. Kallithraka, S., García-Viguera, C., Bridle, P., & Bakker, J. (1995). Survey of solvents for the extraction of grape seed phenolics. Phytochemical Analysis, 6, 265–267.CrossRefGoogle Scholar
  17. Larrauri, J. A., Rupérez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango peels as a new tropical fibre: preparation and characterization. LWT- Food Science and Technology, 29(8), 729–733.CrossRefGoogle Scholar
  18. Maisuthisakul, P., & Gordon, M. H. (2009). Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chemistry, 117, 332–342.CrossRefGoogle Scholar
  19. Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists’ Society, 48(2), 91.CrossRefGoogle Scholar
  20. Montgomery, D. C. (1991). Design and analysis of experiments. New York: Wiley.Google Scholar
  21. Mylonaki, S., Kiassos, E., Makris, D. P., & Kefalas, P. (2008). Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392, 977–985.CrossRefGoogle Scholar
  22. Nithitanakool, S., Pithayanukul, P., Bavovada, R., & Saparpakorn, P. (2009). Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules, 14(1), 257–265.CrossRefGoogle Scholar
  23. Pan, Y., Wang, K., Huang, S., Wang, H., Mu, X., He, C., Ji, X., Zhang, J., & Huang, F. (2008). Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chemistry, 106, 1264–1270.CrossRefGoogle Scholar
  24. Périno-Issartier, S., Zill-e-Huma, Z. H., Abert-Vian, M., & Chemat, F. (2011). Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food and Bioprocess Technology, 4, 1020–1028.CrossRefGoogle Scholar
  25. Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53, 2111–2117.CrossRefGoogle Scholar
  26. Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53, 4290–4302.CrossRefGoogle Scholar
  27. Puravankara, D., Boghra, V., & Sharma, R. S. (2000). Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of buffalo ghee (butter-fat). Journal of the Science of Food and Agriculture, 80(4), 522–526.CrossRefGoogle Scholar
  28. Ribeiro, S. M. R., Barbosa, L. C. A., Queiroz, J. H., Knödler, M., & Schieber, A. (2008). Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chemistry, 110(3), 620–626.CrossRefGoogle Scholar
  29. Routray, W., & Orsat, V. (2011). Microwave-assisted extraction of flavonoids: a review. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0573-z.
  30. Soong, Y. Y., & Barlow, P. J. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88(3), 411–417.CrossRefGoogle Scholar
  31. Soong, Y. Y., & Barlow, P. J. (2006). Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chemistry, 97, 524–530.CrossRefGoogle Scholar
  32. Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81, 200–208.CrossRefGoogle Scholar
  33. Xu, G. H., Chen, J. C., Liu, D. H., Zhang, Y. H., Jiang, P., & Ye, X. Q. (2008). Minerals, phenolics compounds, and antioxidant capacity of citrus peel extract by hot water. Journal of Food Science, 73(1), C11–C18.CrossRefGoogle Scholar
  34. Yap, C. F., Ho, C. W., Wan-Aida, W. M., Chan, S. W., Lee, C. Y., & Leong, Y. S. (2009). Optimization of extraction conditions of total phenolic compounds from star fruit (Averrhoa carambola L.) residues. Sains Malaysiana, 38(4), 511–520.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Post-harvest and Food Technology Laboratory, Department of Tropical Fruit CropsInstituto Canario de Investigaciones AgrariasLa LagunaSpain

Personalised recommendations