Food and Bioprocess Technology

, Volume 6, Issue 4, pp 997–1006 | Cite as

High-Intensity Ultrasound Processing of Pineapple Juice

  • Mayra Garcia Maia Costa
  • Thatyane Vidal Fonteles
  • Ana Laura Tibério de Jesus
  • Francisca Diva Lima Almeida
  • Maria Raquel Alcântara de Miranda
  • Fabiano André Narciso Fernandes
  • Sueli Rodrigues
Original Paper


The influence of ultrasound processing on the physicochemical characteristics of pineapple juice was investigated through an experimental design changing ultrasound time and intensity. After processing, the polyphenoloxidase (PPO) activity in the pineapple juice was reduced by 20% as result of the treatment with longer exposure and higher intensity (376 W/cm2 and 10 min). The effect on phenolic compounds compared to the fresh pineapple juice (non-sonicated) was not statistically significant. Ultrasound processing reduced juice viscosity by 75% of the initial value (non-sonicated juice). The higher the ultrasound intensity and the juice exposure (processing time), the higher the final temperature of the juice, reaching a maximum of 54 °C. Ultrasound processing enhanced the juice color and its stabilization along 42 days of storage compared to the non-sonicated juice. Thermal treatment at the highest temperature reached due to juice sonication (54 °C) showed no effect on PPO inactivation.


High-intensity ultrasound Enzyme activity Phenolic compounds Viscosity Color stability 



The authors thank CNPq for financial support through the National Institute of Science and Technology of Tropical Fruit and CAPES for scholarship.


  1. Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versterrg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9, 155–160.CrossRefGoogle Scholar
  2. Bates, D. M., Bagnall, W. A., & Bridges, M. W. (2006). Method of treatment of vegetable matter with ultrasonic energy. US patent application 20060110503.Google Scholar
  3. Botelho, L., Conceição, A., & Carvalho, V. D. (2002). Caracterização de fibras alimentares da casca e cilindro central do abacaxi ‘Smooth Cayenne’. Ciência agrotecnologia, 26, 362–367.Google Scholar
  4. Bradford, M. M. A. (1976). Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Chemistry, 72, 248–254.Google Scholar
  5. Caminiti, I. M., Noci, F., Muñoz, A., Whyte, P., Morgan, D. J., Cronin, D. J., & Lyng, D. J. (2011). Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chemistry, 124, 1387–1392.CrossRefGoogle Scholar
  6. Char, C. D., Mitilinaki, E., Guerrero, S. N., & Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology, 3, 797–803.CrossRefGoogle Scholar
  7. Chemat, F., Huma, Z., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835.CrossRefGoogle Scholar
  8. Cheng, L. H., Soh, C. Y., Liew, S. C., & Teh, F. F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104, 1396–1401.CrossRefGoogle Scholar
  9. Chutintrasri, B., & Noomhorm, A. (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. LWT- Food Science and Technology, 39, 492–495.CrossRefGoogle Scholar
  10. Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1, 339–345.CrossRefGoogle Scholar
  11. Fonteles, T. V., de Costa, M. G., Jesus, A. L. T., & Rodrigues, S. (2011). Optimization of the fermentation of cantaloupe juice by Lactobacillus casei NRRL B-442. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0600-0.
  12. Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57, 4988–4994.CrossRefGoogle Scholar
  13. Gómez-López, V. M., Orsolani, L., Martínez-Yépez, A., & Tapia, M. S. (2010). Microbiological and sensory quality of sonicated calcium-added orange juice. LWT- Food Science and Technology, 43, 808–813.CrossRefGoogle Scholar
  14. Kim, S. M., & Zayas, J. F. (1989). Processing parameter of chymosin extraction by ultrasound. Journal of Food Science, 54, 700–703.CrossRefGoogle Scholar
  15. Kuldiloke, J. (2002). Effect of ultrasound, temperature and pressure treatments on enzyme activity and quality indicators of fruit and vegetable juices. Doctoral dissertation, Technical University of Berlin, Berlin.Google Scholar
  16. Larrauri, J. A., Rupérez, P., & Saura-calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45, 1390–1393.CrossRefGoogle Scholar
  17. Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound assisted extraction of oil from soybeans. Food Research International, 37, 731–738.CrossRefGoogle Scholar
  18. Lieu, L. N., & Le, V. V. M. (2010). Application of ultrasound in grape mash treatment in juice processing. Ultrasonics Sonochemistry, 17, 273–279.CrossRefGoogle Scholar
  19. Liu, Y., Jin, Q., Shan, L., Liu, Y., Shen, W., & Wang, X. (2008). The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 15, 402–407.CrossRefGoogle Scholar
  20. López, P., Sala, F. J., de la Fuente, J. L., Condon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase, lipoxygenase and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42, 252–256.CrossRefGoogle Scholar
  21. López, P., Vercet, A., Sánchez, A. C., & Burgos, J. (1998). Inactivation of tomato pectic enzymes by manothermosonication. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 207, 249–252.CrossRefGoogle Scholar
  22. Martinez, M. V., & Whitaker, J. R. (1995). The biochemistry and control of enzymatic browning. Trends in Food Science and Technology, 6, 195–200.CrossRefGoogle Scholar
  23. Mason, T. J., Lorimer, J. P., Baters, D. M., & Zhao, Y. (1994). Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrasonics Sonochemistry, 1, 91–95.CrossRefGoogle Scholar
  24. Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, 253–260.CrossRefGoogle Scholar
  25. Minolta. (1998). Precise color communication—color control from perception to instrumentation (p. 59). Osaka: Minolta.Google Scholar
  26. Obanda, M., Owuor, P. O., & Taylor, S. J. (1997). Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture, 74, 209–215.CrossRefGoogle Scholar
  27. O’Donnell, C. P., Tiwari, B. K., Bourke, P., & Cullen, P. J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science and Technology, 21, 358–367.CrossRefGoogle Scholar
  28. Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2011). Dehydration of Malay apple (Syzygium malaccense L) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4, 610–615.CrossRefGoogle Scholar
  29. Sakakibara, M., Wang, D., Takahashi, R., Takahashi, K., & Mori, S. (1996). Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme and Microbial Technology, 18, 444–448.CrossRefGoogle Scholar
  30. Seshadri, R., Weiss, J., Hulbert, G. J., & Mount, J. (2003). Ultrasonic processing influences rheological and optical properties of high methoxyl pectin dispersions. Food Hydrocolloids, 17, 191–197.CrossRefGoogle Scholar
  31. Sun, D. W. (2005). Emerging technologies for food processing. London: Elsevier.Google Scholar
  32. Suslick, K. S. (1988). Ultrasounds: Its chemical physical and biological effects. New York: VHC.Google Scholar
  33. Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2008). Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT- Food Science and Technology, 41, 1878–1883.CrossRefGoogle Scholar
  34. Tiwari, B. K., O’Donnel, C. P. O., Patras, A., & Cullen, P. J. (2008). Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. Journal of Agriculture Food Chemistry, 56, 10071–10077.CrossRefGoogle Scholar
  35. Tiwari, B. K., O’Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food and Bioprocess Technology, 2, 109–114.CrossRefGoogle Scholar
  36. Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2009). Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovative Food Science and Emerging Technologies, 10, 166–171.CrossRefGoogle Scholar
  37. Tiwari, B. K., Patras, A., Brunton, N., Cullen, P. J., & O’Donnell, C. P. (2010). Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 17, 598–604.CrossRefGoogle Scholar
  38. Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2010). Rheological properties of sonicated guar, xanthan and pectin dispersions. International Journal of Food Properties, 13, 223–233.CrossRefGoogle Scholar
  39. Valdramidis, V. P., Cullen, P. J., Tiwari, B. K., & O’Donnell, C. P. (2010). Quantitative modeling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96, 449–454.CrossRefGoogle Scholar
  40. Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80, 509–516.CrossRefGoogle Scholar
  41. Vercet, A., Lopez, P., & Burgos, J. (1999). Inactivation of heat-resistant pectin methylesterase from orange by manothermosonication. Journal of Agriculture and Food Chemistry, 47, 432–437.CrossRefGoogle Scholar
  42. Vercet, A., Burgos, J., & Lopez-Buesa, P. (2001). Manothermosonication of foods and food-resembling systems: effect on nutrient content and nonenzymatic browning. Journal of Agriculture and Food Chemistry, 49, 483–489.CrossRefGoogle Scholar
  43. Vercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50, 6165–6171.CrossRefGoogle Scholar
  44. Wambura, P., Tegete, H., & Verghese, M. (2010). Application of high-power ultrasound to improve adhesion of honey on roasted peanuts to improve oxidative stability. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0467-5.
  45. Wissemann, K. W., & Lee, C. Y. (1980). Polyphenoloxidase activity during grape maturation and wine production. American Journal of Enology and Viticulture, 31, 206–211.Google Scholar
  46. Wong, E., Vaillant, F., & Pérez, A. (2010). Osmosonication of blackberry juice: impact on selected pathogens, spoilage microorganisms, and main quality parameters. Journal of Food Science, 75, 468–474.CrossRefGoogle Scholar
  47. Wu, J., Gamage, T. V., Vilkhu, K. S., Simons, L. K., & Mawson, R. (2008). Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science and Emerging Technologies, 9, 186–195.CrossRefGoogle Scholar
  48. Zenker, M., Heinz, V., & Knorr, D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66, 1642–1649.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mayra Garcia Maia Costa
    • 1
  • Thatyane Vidal Fonteles
    • 1
  • Ana Laura Tibério de Jesus
    • 1
  • Francisca Diva Lima Almeida
    • 1
  • Maria Raquel Alcântara de Miranda
    • 2
  • Fabiano André Narciso Fernandes
    • 3
  • Sueli Rodrigues
    • 1
  1. 1.Departamento de Tecnologia de Alimentos—DTA, Centro de Ciências AgráriasUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Bioquímica, Centro de CiênciasUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de Engenharia Química—DEQ, Centro de TecnologiaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations