Food and Bioprocess Technology

, Volume 6, Issue 1, pp 228–241 | Cite as

Rheological Aspects of Spanish Honeys

  • Mircea Oroian
  • Sonia Amariei
  • Isabel Escriche
  • Gheorghe Gutt
Original Paper

Abstract

The purpose of this work was to investigate the rheological behavior of Spanish honeys under different conditions (at different temperatures and concentrations). All the samples were characterized to determine their physicochemical (moisture, 0Brix, pH, ash, conductivity, color, total acidity, diastase activity, 5-hydroxymethylfurfural content, sugar content) and thermal (glass transition temperature) profiles. The honeys samples (80.4–82 0Brix) behaved as Newtonian fluid; as expected, their viscosity increased with the solid content and decreased with the temperature. Two experimental viscosity models (Arrhenius and Vogel–Taumman–Fulcher) were checked using the experimental data to correlate the influence of temperature on honey viscosity. A simplified model was proposed to describe the combined effect of the temperatures and concentrations (0Brix) on the viscosity of Spanish honeys. The dynamic viscosity and complex viscosity had the same magnitude at 40 °C, 45 °C, and 50 °C for of all the samples and the Cox Merz rule could be applied at these temperatures.

Keywords

Honey Arrhenius model Vogel–Taumman–Fulcher model Concentration temperature model Cox Merz rule 

References

  1. Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38.CrossRefGoogle Scholar
  2. Ahmed, J., Ramaswamy, H. S., & Sashidhar, K. C. (2007). Rheological characteristics of tamarind (Tamarindus indica L.) juice concentrates, LWT. Food Science and Technology, 40(2), 225–231.Google Scholar
  3. Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behaviour of selected Indian honey. Journal of Food Engineering, 79, 1207–1213.CrossRefGoogle Scholar
  4. Al-Malah, K. I. M., Abu-Jdayil, B., Zaitoun, S., & Ghzawi, A. A. M. (2001). Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. Journal of Food Process Engineering, 24, 341–357.CrossRefGoogle Scholar
  5. Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63, 549–562.CrossRefGoogle Scholar
  6. Assil, H. I., Sterling, R., & Sporns, P. (1991). Crystal control in processed liquid honey. Journal of Food Science, 56(4), 1034–1037. 1041.CrossRefGoogle Scholar
  7. Augusto, P. E. D., Falguera, V., Cristianini, M., & Ibarz, A. (2011). Viscoelastic properties of tomato juice: applicability of the Cox–Merz rule. Food and Bioprocess Technology. doi:10.1007/s11947-011-0655-y.
  8. Baroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): assessment of north/south provenance by chemometrics. Food Chemistry, 114, 727–733.CrossRefGoogle Scholar
  9. Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68.CrossRefGoogle Scholar
  10. Bistanzy, K. L., & Kokini, J. L. (1983). Comparison of steady shear rheological properties and small amplitude dynamic viscoelastic properties of fluid food materials. Journal of Texture Studies, 14, 113–124.CrossRefGoogle Scholar
  11. Bogdanov S., (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland.Google Scholar
  12. Chamberlain, E. K., & Rao, M. A. (1999). Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers, 40, 251–260.CrossRefGoogle Scholar
  13. Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527.CrossRefGoogle Scholar
  14. Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14.CrossRefGoogle Scholar
  15. Codex Alimentarius. (1993). Standard for honey, ref. no. CL 1993/14, SH. Rome: Codex Alimentarius Commission FAO/WHO.Google Scholar
  16. Codex Standard (Codex Alimentarius) 12–1981, Rev. 2 (2001) Revised codex standard for honeyGoogle Scholar
  17. Cohen, I., & Weihs, D. (2010). Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. Journal of Food Engineering, 100(2), 366–371.CrossRefGoogle Scholar
  18. Corbella, E., & Cozzolino, D. (2006). Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometics. LWT- Food Science and Technology, 39, 534–539.CrossRefGoogle Scholar
  19. Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619–622.CrossRefGoogle Scholar
  20. Da Silva, J. A. L., & Rao, M. A. (1992). Viscoelastic properties of food hydrocolloid dispersions. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods. London, UK: Elseiver.Google Scholar
  21. Escriche, I., Visquert, M., Juan-Borras, M., & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractionsof different varieties of honey. Food Chemistry, 112, 329–338.CrossRefGoogle Scholar
  22. European Commission Directive relating to honey (2001). 2001/110/CE of 02/12/2001.Google Scholar
  23. Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313.CrossRefGoogle Scholar
  24. Fissore, E. N., Matkovic, L., Wider, E., Rojas, A. M., & Gerschenson, L. N. (2009). Rheological properties of pectin-enriched products isolated from butternut (Cucurbita moschata Duch ex Poiret). LWT- Food Science and Technology, 42(8), 1413–1421.CrossRefGoogle Scholar
  25. Giner, J., Ibarz, A., Garza, S., & Xhian-Quan, S. (1996). Rheology of clarified cherry juices. Journal of Food Enginnering, 30, 147–154.CrossRefGoogle Scholar
  26. Gómez Diaz, D., Navaza, J. M., & Quintans, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404.CrossRefGoogle Scholar
  27. Gómez Díaz, D., Navaza, J. M., & Quintans, L. C. (2005). Rheological behaviour of Galician honeys. European Food Research and Technology, 222, 439–442.CrossRefGoogle Scholar
  28. Guinee, T. P., Auty, M. A. E., & Fenelon, M. A. (2000). The effect of fat content on the rheology, microstructure and heat-induced functional characteristics of Cheddar cheese. International Dairy Journal, 10, 277–288.CrossRefGoogle Scholar
  29. Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Md: Aspen Publishers.Google Scholar
  30. Ibarz, A., Vicente, M., & Graell, J. (1987). Rheological behavior of apple juice and pear juice and their concentrates. Journal of Food Engineering, 6, 257–267. doi:10.1016/0260-8774(87)90013-6.CrossRefGoogle Scholar
  31. Ibarz, A., Pagán, J., & Miguelsanz, R. (1992). Rheology of clarified fruit juices. II. Blackcurrant juices. Journal of Food Engineering, 15, 63–67. doi:10.1016/0260-8774(92)90040-D.CrossRefGoogle Scholar
  32. Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168.CrossRefGoogle Scholar
  33. Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49.CrossRefGoogle Scholar
  34. Kahyaoglu, T., & Kaya, S. (2003). Effect of heat treatment and fat reduction on the rheological and functional properties of Gaziantep cheeese. International Dairy Journal, 13, 867–875.CrossRefGoogle Scholar
  35. Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94.Google Scholar
  36. Kaya, A., Ko, S., & Gunasekaran, S. (2008). Viscosity and color change during in situ solidification of grape pekmez. Food and Bioprocess Technology, 4(2), 241–246.CrossRefGoogle Scholar
  37. Kokini, J. L. (1992). Rheological properties of food. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering (pp. 1–38). New York: Marcel Dekker.Google Scholar
  38. Kucuk, M., Kolayh, S., Karaoglu, S., Ulusoy, E., Baltaci, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100, 526–534.CrossRefGoogle Scholar
  39. Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117.CrossRefGoogle Scholar
  40. Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21.CrossRefGoogle Scholar
  41. Mărghiţaş, L., Dezmirean, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112, 863–867.CrossRefGoogle Scholar
  42. Mazzobre, M. F., Soto, G., Aguilera, J. M., & Buera, P. (2001). Crystallization kinetics of lactose in systems co-lyophilized with trehalose. Analysis by differential scanning calorimetry. Food Research International, 34(10), 903–911.CrossRefGoogle Scholar
  43. Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552.Google Scholar
  44. Nanda, V., Sarkar, B. C., Sharma, H. K., & Bawa, A. S. (2003). Physico–chemical properties and estimation of mineral content in honey produced from different plants in Northern India. Journal of Food Compost. Anal, 16, 613–619.CrossRefGoogle Scholar
  45. Ollet, A. L., & Parker, R. (1995). The viscosity of supercooled fructose and its glass transition temperature. Journal of Texture Studies, 21, 355–362.CrossRefGoogle Scholar
  46. Ouchemoukh, S., Louaileche, H., & Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18, 52–58.CrossRefGoogle Scholar
  47. Parker, R., & Ring, S. G. (1995). A theoretical analysis of diffusion controlled reactions in frozen solutions. CryoLetters, 16, 197–208.Google Scholar
  48. Patil, U., & Muskan, K. (2009). Essentials of biotechnology. New Delhi, India: International Publishing House.Google Scholar
  49. Persano-Oddo, L., Gioia-Piazza, M., & Zellini, G. (1995). Caratteristiche cromatiche dei mieli uniflorali. Apicoltura, 10, 109–120.Google Scholar
  50. Rao, M. A., Cooley, H. J., & Vizali, A. A. (1984). Flow properties of concentrated juices at low temperatures. Food Technology, 38, 113–119.Google Scholar
  51. Recondo, M. P., Elizalde, B. E., & Buera, M. P. (2006). Modelling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77(1), 126–134.CrossRefGoogle Scholar
  52. Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: características e identificación mediante el análisis del polen. Madrid, Spain: Mundi-Prensa.Google Scholar
  53. Salinas, M. V., Zuleta, A., Ronayne, P., & Puppo, M. C. (2011). Wheat flour enriched with calcium and inulin: a study of hydration and rheological properties of dough. Food and Bioprocess Technologies. doi:10.1007/s11947-011-0691-7.
  54. Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113.CrossRefGoogle Scholar
  55. Serrano, S., Villarejo, M., Espejo, R., & Jodral, M. (2004). Chemical and physical parameters of Andalusian honey: classification of citrus and eucalyptus honeys by discriminant analysis. Food Chemistry, 87, 619–625.CrossRefGoogle Scholar
  56. Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75.CrossRefGoogle Scholar
  57. Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309.CrossRefGoogle Scholar
  58. Soria, A. C., Gonzalez, M., de Lorenzo, C., Martínez-Castro, I., & Sanz, J. (2004). Characterization of artesanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121–130.CrossRefGoogle Scholar
  59. Steffe, J. (1996). Rheological methods in food process engineering—second edition. USA: Freeman Press.Google Scholar
  60. Steffolani, M. E., Ribotta, P. D., Perez, G. T., Puppo, M. C., & León, A. E. (2011). Use of enzymes to minimize dough freezing damage. Food and Bioprocess Technologies. doi:10.1007/s11947-011-0538-2.
  61. Talens, P., Martinez-Navarrete, N., Fito, P., & Chiralt, A. (2001). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3, 191–199.CrossRefGoogle Scholar
  62. Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003a). Mineral content and electrical conductivity of honeysproduced in Northewet Morocco and their contribution to the characterisation of unifloral honeys. Journal of the Science of Food and Agriculture, 83, 637–643.CrossRefGoogle Scholar
  63. Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003b). Characterisation of Moroccan unifloral honeys using multivariate analysis. European Food Research and Technology, 218, 88–95.CrossRefGoogle Scholar
  64. Tiziani, S., & Vodovotz, Y. (2005). Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19(1), 45–52.CrossRefGoogle Scholar
  65. Villegas, B., & Costell, E. (2007). Flow behaviour of inulin–milk beverages. Influence of inulin average chain length and milk fat content. International Dairy Journal, 17, 776–781.CrossRefGoogle Scholar
  66. White, J. W. (1975). Physical characteristics of honey. In E. Crane (Ed.), Honey: a comprehensive survey (pp. 207–239). London: Morrison and Gibs.Google Scholar
  67. White, J. W., Jr. (1978). Honey. Advances in Food Research, 24, 287–274.CrossRefGoogle Scholar
  68. Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537.CrossRefGoogle Scholar
  69. Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377.CrossRefGoogle Scholar
  70. Yaşar, K., Kahyaoglu, T., & Şahan, N. (2009). Dynamic rheological characterization of salep glucomannan/galactomannanbased milk beverages. Food Hydrocolloids, 23(5), 1305–1311.CrossRefGoogle Scholar
  71. Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463.Google Scholar
  72. Zaitoun, S., Ghzawi, A., Al-Malah, K. I. M., & Abu-Jdayil, B. (2001). Rheological properties of selected light colored Jordanian honey. International Journal of Food Properties, 4, 139–148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mircea Oroian
    • 1
  • Sonia Amariei
    • 1
  • Isabel Escriche
    • 2
  • Gheorghe Gutt
    • 1
  1. 1.Faculty of Food Engineering“Stefan cel Mare” UniversitySuceavaRomania
  2. 2.Institute of Food Engineering for Development (IUIAD), Food Technology Department (DTA)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations