Food and Bioprocess Technology

, Volume 6, Issue 1, pp 80–91 | Cite as

Effect of Osmotic Dehydration and Pectin Edible Coatings on Quality and Shelf Life of Fresh-Cut Melon

  • Cristhiane C. Ferrari
  • Claire I. G. L. Sarantópoulos
  • Sandra M. Carmello-Guerreiro
  • Miriam D. Hubinger
Original Paper


The aim of this work was to investigate the influence of osmotic dehydration and pectin edible coating on quality parameters of fresh-cut melon. Fruits were osmodehydrated in 40°Bx sucrose solution containing 0.5% calcium lactate or dipped in 0.5% calcium lactate solutions. Then, samples were coated with 1% pectin. Melon pieces dipped in sanitizing solution (nontreated sample) were used as control. Weight loss, respiration rate, firmness, color parameters (lightness, chroma, and whiteness index), sensory acceptance, microbial growth, and structural changes of fruits were evaluated during storage at 5 °C for 14 days. The shelf life of the control sample was limited to 9 days due to microbial growth and sensory rejection, while treated samples showed a shelf life of 14 days. Higher preservation of firmness in coated samples was attributed to the action of calcium salt on melon structure, causing a strengthening of the cell wall. Calcium lactate also inhibited microbial growth along storage, improving microbiological stability of fresh-cut melon. The use of calcium lactate dips and pectin edible coatings hindered weight loss and maintained fruit color characteristics during the storage time. However, these pretreatments probably masked melon taste, reducing the sensory acceptance scores at the end of shelf life study. The combination of osmotic dehydration and pectin coatings was a good preservation alternative for fresh-cut melon, since it improved fruit sensory acceptance, promoting the reduction of product respiration rate, as well as the maintenance of quality parameters during 14 days.


Melon Calcium lactate Polysaccharide-based coatings Shelf life Quality Osmotic dehydration 



The authors would like to thank CNPq (301761/2004-3) and FAPESP (2006/03263-9, 2009/51420-4) for the financial support.


  1. Aguayo, E., Escalona, V. H., & Artés, F. (2004). Metabolic behavior and quality changes of whole and fresh processed melon. Journal of Food Science, 69(4), 148–155.Google Scholar
  2. Aguayo, E., Escalona, V. H., & Artés, F. (2008). Effect of hot water treatment and various calcium salts on quality of fresh-cut “amarillo” melon. Postharvest Biology and Technology, 47(3), 397–406.CrossRefGoogle Scholar
  3. Alandes, L., Hernando, I., Quiles, A., Pérez-Munuera, I., & Lluch, M. A. (2006). Cell wall stability of fresh-cut ‘Fuji’ apples treated with calcium lactate. Journal of Food Science, 71(9), 615–620.CrossRefGoogle Scholar
  4. Alves, R.E. (2000). Melon: post-harvest (pp. 1–43). Brasília: Embrapa Comunicação para Transferência de Tecnologia. (In Portuguese).Google Scholar
  5. Bico, S. L. S., Raposo, M. F. J., Morais, R. M. S. C., & Morais, A. M. M. B. (2009). Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control, 20(5), 508–514.CrossRefGoogle Scholar
  6. Bierhals, V. S., Chiumarelli, M., & Hubinger, M. D. (2011). Effect of cassava starch coating on quality and shelf life of fresh-cut pineapple (Ananas comosus L. Merril cv “Pérola”). Journal of Food Science, 76(1), 62–72.CrossRefGoogle Scholar
  7. Brazil RDC Resolution No. 12 of 2 January (2001). Technical regulation on microbiological standards for foodstuffs. Brasilia: National Health Surveillance Agency (Ministry of Health/ANVISA). Accessed 25 Jan 2010.
  8. Castelló, M. L., Igual, M., Fito, P. J., & Chiralt, A. (2009). Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (var. Granny Smith). Journal of Food Engineering, 91(1), 1–9.CrossRefGoogle Scholar
  9. Castelló, M. L., Fito, P. J., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1), 64–71.CrossRefGoogle Scholar
  10. CEAGESP (2004). Normas de Classificação de Melão (Cucumis melo L.). São Paulo: Programa Brasileiro para Modernização da Horticultura. Accessed 9 Feb 2009.
  11. Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Cassava starch coating and citric acid to preserve quality parameters of fresh-cut ‘Tommy Atkins’ mango. Journal of Food Science, 75(5), 297–304.CrossRefGoogle Scholar
  12. Chiumarelli, M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2011). Fresh cut ‘Tommy Atkins’ mango pre-treated with citric acid and coated with cassava (Manihot esculenta Crantz) starch or sodium alginate. Innovative Food Science and Emerging Technologies, 12(3), 381–387.CrossRefGoogle Scholar
  13. Downes, F. P., & Ito, K. (2001). Compendium of methods for the microbiological examination of foods. Washington: American Public Health Association.CrossRefGoogle Scholar
  14. Eum, H. L., Hwang, D. K., Linke, M., Lee, S. K., & Zude, M. (2009). Influence of edible coatings on quality of plum (Prunus salicina Lindl. cv. ‘Sapphire’). European Food Research and Technology, 229(3), 427–434.CrossRefGoogle Scholar
  15. Ferrari, C. C., Carmello-Guerreiro, S. M., Bolini, H. M. A., & Hubinger, M. D. (2010). Structural changes, mechanical properties and sensory preference of osmodehydrated melon pieces with sucrose and calcium lactate solutions. International Journal of Food Properties, 13(1), 112–130.CrossRefGoogle Scholar
  16. Garcia, L. C., Pereira, L. M., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Selection of an edible starch coating for minimally processed strawberry. Food and Bioprocess Technology, 3(6), 834–842.CrossRefGoogle Scholar
  17. Lacroix, M., & Le Tien, C. (2005). Edible films and coatings from non-starch polysaccharides. In J. H. Han (Ed.), Innovations in food packaging (pp. 338–361). San Diego: Elsevier Academic.CrossRefGoogle Scholar
  18. Lamikanra, O., & Watson, M. A. (2004). Effect of calcium treatment temperature on fresh-cut cantaloupe melon during storage. Journal of Food Science, 69(6), 468–472.CrossRefGoogle Scholar
  19. Lee, J. Y., Park, H. J., Lee, C. Y., & Choi, W. Y. (2003). Extending shelf life of minimally processed apples with edible coatings and antibrowning agents. LWT—Food Science and Technology, 36(3), 323–329.Google Scholar
  20. Lewicki, P. P., Gondek, E., Witrowa-Rajchert, A. D., & Nowak, N. (2001). Effect of drying on respiration of apple slices. Journal of Food Engineering, 49(4), 333–337.CrossRefGoogle Scholar
  21. Maftoonazad, N., Ramaswamy, H. S., & Marcotte, M. (2008). Shelf-life extension of peaches through sodium alginate and methyl cellulose edible coatings. International Journal of Food Science and Technology, 43(6), 951–957.CrossRefGoogle Scholar
  22. Martín-Belloso, O. (2007). Pros and cons of minimally processed foods. Trends in Food Science & Technology, 18(11), 582.CrossRefGoogle Scholar
  23. Martín-Diana, A. B., Rico, D., Frías, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. Trends in Food Science & Technology, 18(4), 210–218.CrossRefGoogle Scholar
  24. Meilgaard, M., Civille, G. V., & Carr, B. T. (1999). Sensory evaluation techniques. Boca Raton: CRC.CrossRefGoogle Scholar
  25. Moraga, M. J., Moraga, G., Fito, P. J., & Martínez-Navarrete, N. (2009). Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit. Journal of Food Engineering, 90(3), 372–379.CrossRefGoogle Scholar
  26. Olivas, G. I., Mattinson, D. S., & Barbosa-Cánovas, G. V. (2007). Alginate coatings for preservation of minimally processed ‘Gala’ apples. Postharvest Biology and Technology, 45(1), 89–96.CrossRefGoogle Scholar
  27. Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2008a). Using polysaccharide-based edible coatings to enhance quality and antioxidant properties of fresh-cut melon. LWT—Food Science and Technology, 41(10), 1862–1870.Google Scholar
  28. Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2008b). Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biology and Technology, 50(1), 87–94.CrossRefGoogle Scholar
  29. Pereira, L. M., Carmello-Guerreiro, S. M., Junqueira, V. C. A., Ferrari, C. C., & Hubinger, M. D. (2010). Calcium lactate effect on the shelf life of osmotically dehydrated guavas. Journal of Food Science, 75(9), 612–619.CrossRefGoogle Scholar
  30. Qi, H., Hu, W., Jiang, A., Tian, M., & Li, Y. (2011). Extending shelf-life of fresh-cut ‘Fuji’ apples with chitosan-coatings. Innovative Food Science and Emerging Technologies, 12(1), 62–66.CrossRefGoogle Scholar
  31. Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Bellloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121(3), 313–327.CrossRefGoogle Scholar
  32. Rico, D., Martín-Diana, A. B., Frías, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to-eat carrots. Journal of Food Engineering, 79(4), 1196–1206.CrossRefGoogle Scholar
  33. Rodrigues, A. C. C., Pereira, L. M., Sarantópoulos, C. I. G. L., Bolini, H. M. A., Cunha, R. L., Junqueira, V. C. A., et al. (2006). Impact of modified atmosphere packaging on the osmodehydrated papaya stability. Journal of Food Processing and Preservation, 30(5), 563–581.CrossRefGoogle Scholar
  34. Rojas-Graü, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT—Food Science and Technology, 41(1), 139–147.Google Scholar
  35. Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2004). Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum. Postharvest Biology and Technology, 34(2), 155–167.CrossRefGoogle Scholar
  36. Soliva-Fortuny, R. C., & Martín-Belloso, O. (2003). New advances in extending the shelf-life of fresh-cut fruits: a review. Trends in Food Science & Technology, 14(9), 341–353.CrossRefGoogle Scholar
  37. Tapia, M. S., Rojas-Grau, M. A., Carmona, A., Rodriguez, F. J., Soliva-Fortuny, R., & Martin-Belloso, O. (2008). Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 22(8), 1493–1503.CrossRefGoogle Scholar
  38. Torreggiani, D., & Bertolo, G. (2001). Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. Journal of Food Engineering, 49(2–3), 247–253.CrossRefGoogle Scholar
  39. Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496–511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cristhiane C. Ferrari
    • 1
  • Claire I. G. L. Sarantópoulos
    • 2
  • Sandra M. Carmello-Guerreiro
    • 3
  • Miriam D. Hubinger
    • 1
  1. 1.Department of Food Engineering, Faculty of Food EngineeringState University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Packaging Technology CenterInstitute of Food Technology (ITAL)CampinasBrazil
  3. 3.Department of Botany, Biology InstituteState University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations