Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 3, pp 854–867 | Cite as

Nanoemulsions for Food Applications: Development and Characterization

  • Hélder Daniel Silva
  • Miguel Ângelo Cerqueira
  • António A. Vicente
Review Paper

Abstract

The application of nanotechnology to food, medical and pharmaceutical industries has received great attention from the scientific community. Driven by the increasing consumers’ demand for healthier and safer food products and the need for edible systems able to encapsulate, protect, and release functional compounds, researchers are currently focusing their efforts in nanotechnology to address issues relevant to food and nutrition. Nanoemulsion technology is particularly suited for the fabrication of encapsulating systems for functional compounds as it prevents their degradation and improves their bioavailability. This review focuses on nanoemulsions and provides an overview of the production methods, materials used (solvents, emulsifiers, and functional ingredients) and of the current analytical techniques that can be used for the identification and characterization of nanoemulsions. Finally, nanotechnological applications in foods currently marketed are reported.

Keywords

Nanoemulsions Encapsulation Functional compounds Analytical methods Characterization techniques 

Notes

Acknowledgment

M.A. Cerqueira (SFRH/BPD/72753/2010) is recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, Portugal).

References

  1. Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid & Interface Science, 14(1), 3–15.CrossRefGoogle Scholar
  2. Akoh, C. C., & Min, D. B. (2002). Food lipids: Chemistry, nutrition, and biotechnology (2nd ed.). New York: Marcel Dekker.CrossRefGoogle Scholar
  3. Anton, N., Gayet, P., Benoit, J.-P., & Saulnier, P. (2007). Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics, 344(1–2), 44–52.CrossRefGoogle Scholar
  4. Anton, N., Benoit, J.-P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 128(3), 185–199.CrossRefGoogle Scholar
  5. AquaNova (2011). Available at: http://www.aquanova.de/media/public/pdf_produkte unkosher/NovaSOL_beverage.pdf. Accessed 13 April 2011.
  6. Araújo, F. A., Kelmann, R. G., Araújo, B. V., Finatto, R. B., Teixeira, H. F., & Koester, L. S. (2011). Development and characterization of parenteral nanoemulsions containing thalidomide. European Journal of Pharmaceutical Sciences, 42(3), 238–245.CrossRefGoogle Scholar
  7. ASTM (1985) Zeta potential of colloids in water and waste water. American Society for Testing and Materials, D 4187–4182.Google Scholar
  8. Azároff, L. V., Kaplow, R., Kato, N., Weiss, R. J., Wilson, A. J. C., & Young, R. A. (1974). Crystal physics, diffraction, theoretical and general crystallography. New York: McGraw-Hill.Google Scholar
  9. Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. International Journal of Pharmaceutics, 280(1–2), 241–251.CrossRefGoogle Scholar
  10. Burapapadh, K., Kumpugdee-Vollrath, M., Chantasart, D., & Sriamornsak, P. (2010). Fabrication of pectin-based nanoemulsions loaded with itraconazole for pharmaceutical application. Carbohydrate Polymers, 82(2), 384–393.CrossRefGoogle Scholar
  11. Casadei, M. A., Cerreto, F., Cesa, S., Giannuzzo, M., Feeney, M., Marianecci, C., et al. (2006). Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. International Journal of Pharmaceutics, 325(1–2), 140–146.CrossRefGoogle Scholar
  12. Center for Biological Nanotechnology (2001). Available at: http://www.vitamincity.com/umichnanobio.htm. Accessed 12 April 2011.
  13. Chaix, C., Pacard, E., Elaïssari, A., Hilaire, J.-F., & Pichot, C. (2003). Surface functionalization of oil-in-water nanoemulsion with a reactive copolymer: Colloidal characterization and peptide immobilization. Colloids and Surfaces. B, Biointerfaces, 29(1), 39–52.CrossRefGoogle Scholar
  14. Chau, C.-F., Wu, S.-H., & Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18(5), 269–280.CrossRefGoogle Scholar
  15. Chen, L., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17(5), 272–283.CrossRefGoogle Scholar
  16. Cheong, J. N., Tan, C. P., Man, Y. B. C., & Misran, M. (2008). [alpha]-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. Journal of Food Engineering, 89(2), 204–209.CrossRefGoogle Scholar
  17. Chu, B.-S., Ichikawa, S., Kanafusa, S., & Nakajima, M. (2007). Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. Journal of the American Oil Chemists’ Society, 84(11), 1053–1062.CrossRefGoogle Scholar
  18. Connolly JR (2007). Introduction to X-Ray Powder Diffraction., Available at: http://epswww.unm.edu/xrd/xrdclass/01-XRD-Intro.pdf. Accessed 14 January 2011.
  19. Date, A. A., Desai, N., Dixit, R., & Nagarsenker, M. (2010). Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine, 5(10), 1595–1616.CrossRefGoogle Scholar
  20. de Araújo, S. C., de Mattos, A. C. A., Teixeira, H. F., Coelho, P. M. Z., Nelson, D. L., & de Oliveira, M. C. (2007). Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, 337(1–2), 307–315.CrossRefGoogle Scholar
  21. Dulog, L., & Schauer, T. (1996). Field flow fractionation for particle size determination. Progress in Organic Coatings, 28(1), 25–31.CrossRefGoogle Scholar
  22. Edwards, K. A., & Baeumner, A. J. (2006). Analysis of liposomes. Talanta, 68(5), 1432–1441.CrossRefGoogle Scholar
  23. Ee, S. L., Duan, X., Liew, J., & Nguyen, Q. D. (2008). Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chemical Engineering Journal, 140(1–3), 626–631.CrossRefGoogle Scholar
  24. Fasolo, D., Schwingel, L., Holzschuh, M., Bassani, V., & Teixeira, H. (2007). Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. Journal of Pharmaceutical and Biomedical Analysis, 44(5), 1174–1177.CrossRefGoogle Scholar
  25. Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2), 313–332.CrossRefGoogle Scholar
  26. Gao, F., Zhang, Z., Bu, H., Huang, Y., Gao, Z., Shen, J., et al. (2011). Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. Journal of Controlled Release, 149(2), 168–174.CrossRefGoogle Scholar
  27. Garti, N., Spernath, A., Aserin, A., & Lutz, R. (2005). Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter, 1(3), 206–218.CrossRefGoogle Scholar
  28. Glatter O & Kratky O, (1982). Small Angle X-ray Scattering. Academic Press.Google Scholar
  29. Grigoriev, D. O., & Miller, R. (2009). Mono- and multilayer covered drops as carriers. Current Opinion in Colloid & Interface Science, 14(1), 48–59.CrossRefGoogle Scholar
  30. Gruère G, Narrod C & Abbott L (2011). Agricultural, Food, and Water Nanotechnologies for the Poor, Available at: http://www.ifpri.org/sites/default/files/publications/ifpridp01064.pdf. Accessed
  31. Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey, C. M., & Nolla, J. (2008). Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science, 13(4), 245–251.CrossRefGoogle Scholar
  32. Halliday J (2007). EFSA opens the floor on nanotechnology, Available at: http://www.foodnavigator.com/Financial-Industry/EFSA-opens-the-floor-on-nanotechnology. Accessed 13 April 2011.
  33. Horn, D., & Rieger, J. (2001). Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angewandte Chemie, International Edition, 40(23), 4330–4361.CrossRefGoogle Scholar
  34. Howe, A. M., & Pitt, A. R. (2008). Rheology and stability of oil-in-water nanoemulsions stabilised by anionic surfactant and gelatin 2) addition of homologous series of sugar-based co-surfactants. Advances in Colloid and Interface Science, 144(1–2), 30–37.CrossRefGoogle Scholar
  35. Huang, Q., Yu, H., & Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75(1), R50–R57.CrossRefGoogle Scholar
  36. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J., Azemar, N., et al. (2001). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26–30.CrossRefGoogle Scholar
  37. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, J. C., Feng, J., Garcia-Celma, M. J., et al. (2004). Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir, 20(16), 6594–6598.CrossRefGoogle Scholar
  38. Izquierdo, P., Feng, J., Esquena, J., Tadros, T. F., Dederen, J. C., Garcia, M. J., et al. (2005). The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. Journal of Colloid and Interface Science, 285(1), 388–394.CrossRefGoogle Scholar
  39. Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.CrossRefGoogle Scholar
  40. Jenning, V., Mäder, K., & Gohla, S. H. (2000). Solid lipid nanoparticles (SLN(TM)) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. International Journal of Pharmaceutics, 205(1–2), 15–21.CrossRefGoogle Scholar
  41. Jenning, V., Thünemann, A. F., & Gohla, S. H. (2000). Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. International Journal of Pharmaceutics, 199(2), 167–177.CrossRefGoogle Scholar
  42. Jiahui, H., Johnston, K. P., & Williams Iii, R. O. (2004). Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Development and Industrial Pharmacy, 30(3), 233–245.CrossRefGoogle Scholar
  43. Jores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., & Mäder, K. (2004). Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release, 95(2), 217–227.CrossRefGoogle Scholar
  44. Katagi, S., Kimura, Y., & Adachi, S. (2007). Continuous preparation of O/W nano-emulsion by the treatment of a coarse emulsion under subcritical water conditions. LWT - Food Science and Technology, 40(8), 1376–1380.CrossRefGoogle Scholar
  45. Kelmann, R. G., Kuminek, G., Teixeira, H. F., & Koester, L. S. (2007). Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. International Journal of Pharmaceutics, 342(1–2), 231–239.CrossRefGoogle Scholar
  46. Kesisoglou, F., Panmai, S., & Wu, Y. H. (2007). Application of nanoparticles in oral delivery of immediate release formulations. Current Nanoscience, 3, 183–190.CrossRefGoogle Scholar
  47. Lee, S. J., & McClements, D. J. (2010). Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 24(6–7), 560–569.CrossRefGoogle Scholar
  48. Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16(6), 721–727.CrossRefGoogle Scholar
  49. Liu, W., Sun, D., Li, C., Liu, Q., & Xu, J. (2006). Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 303(2), 557–563.CrossRefGoogle Scholar
  50. Luykx, D. M. A. M., Goerdayal, S. S., Dingemanse, P. J., Jiskoot, W., & Jongen, P. M. J. M. (2005). HPLC and tandem detection to monitor conformational properties of biopharmaceuticals. Journal of Chromatography B, 821(1), 45–52.CrossRefGoogle Scholar
  51. Luykx, D. M. A. M., Peters, R. J. B., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231–8247.CrossRefGoogle Scholar
  52. Maa, Y.-F., & Hsu, C. C. (1999). Performance of sonication and microfluidization for liquid–liquid emulsification. Pharmaceutical Development and Technology, 4(2), 233–240.CrossRefGoogle Scholar
  53. Martins P, Dulley R, Ramos S, Barbosa M, Assumpção R, Junior S & Lacerda A (2007). Nanotecnologias na indústria de alimentos., Available at: http://www.pucsp.br/eitt/downloads/vi_ciclo_paulomartins_marisabarbosa_nano_puc.pdf. Accessed 14 April 2011.
  54. McClements, D. J. (2000). Isothermal titration calorimetry study of pectin–ionic surfactant interactions. Journal of Agricultural and Food Chemistry, 48(11), 5604–5611.CrossRefGoogle Scholar
  55. McClements, D. (2005). Food emulsions: Principles, practice, and techniques (2nd ed.). Boca Raton: CRC.Google Scholar
  56. McClements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science, 72(8), R109–R124.CrossRefGoogle Scholar
  57. McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, 49(6), 577–606.CrossRefGoogle Scholar
  58. Mills, I., Cvitas, T., Homann, K., Kallay, N., & Kuchitsu, K. (1993). IUPAC quantities, units and symbols in physical chemistry (2nd ed.). Oxford: Blackwell.Google Scholar
  59. Möller, M., Eberle, U., Hermann, A., Moch, K., & Stratmann, B. (2009). Nanotechnology in the food sector. Zürich: TA-SWISS.Google Scholar
  60. Morales, D., Gutiérrez, J. M., García-Celma, M. J., & Solans, Y. C. (2003). A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir, 19(18), 7196–7200.CrossRefGoogle Scholar
  61. Moraru, C. I., Panchapakesan, C. P., Huang, Q., Takhistov, P., Liu, S., & Kokini, J. L. (2003). Nanotechnology, a new frontier in food science. Food Technology, 57(12), 24–29.Google Scholar
  62. Mulik, R. S., Mönkkönen, J., Juvonen, R. O., Mahadik, K. R., & Paradkar, A. R. (2010). Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. International Journal of Pharmaceutics, 398(1–2), 190–203.CrossRefGoogle Scholar
  63. Neethirajan, S., & Jayas, D. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.CrossRefGoogle Scholar
  64. Nicolet T (2001). Introduction to fourier transform infrared spectrometry., Available at: http://mmrc.caltech.edu/FTIR/FTIRintro.pdf. Accessed 11 January 2011.
  65. NutraLease (2011a). Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84&FID=767. Accessed 13 April 2011.
  66. NutraLease (2011b). Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84&FID=769. Accessed 13 April 2011.
  67. NutraLease (2011c). Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84&FID=768. Accessed 13 April 2011.
  68. Pan, X., Yao, P., & Jiang, M. (2007). Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and [beta]-carotene. Journal of Colloid and Interface Science, 315(2), 456–463.CrossRefGoogle Scholar
  69. Porras, M., Solans, C., González, C., & Gutiérrez, J. M. (2008). Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324(1–3), 181–188.CrossRefGoogle Scholar
  70. Preetz, C., Hauser, A., Hause, G., Kramer, A., & Mäder, K. (2010). Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: Distinction of nanoemulsions from nanocapsules. European Journal of Pharmaceutical Sciences, 39(1–3), 141–151.CrossRefGoogle Scholar
  71. Quintanilla-Carvajal, M., Camacho-Díaz, B., Meraz-Torres, L., Chanona-Pérez, J., Alamilla-Beltrán, L., Jimenéz-Aparicio, A., et al. (2010). Nanoencapsulation: A new trend in food engineering processing. Food Engineering Reviews, 2(1), 39–50.CrossRefGoogle Scholar
  72. Rao, J., & McClements, D. J. (2010). Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. Journal of Agricultural and Food Chemistry, 58(11), 7059–7066.CrossRefGoogle Scholar
  73. Reimer, L. (2000). Scanning electron microscopy: physics of image formation and microanalysis, second edition. Measurement Science and Technology, 11(12), 1826.CrossRefGoogle Scholar
  74. Relkin, P., Yung, J.-M., Kalnin, D., & Ollivon, M. (2008). Structural behaviour of lipid droplets in protein-stabilized nano-emulsions and stability of α-tocopherol. Food Biophysics, 3(2), 163–168.CrossRefGoogle Scholar
  75. Ribeiro, H. S., Chu, B.-S., Ichikawa, S., & Nakajima, M. (2008). Preparation of nanodispersions containing [beta]-carotene by solvent displacement method. Food Hydrocolloids, 22(1), 12–17.CrossRefGoogle Scholar
  76. Robinson D & Morrison M (2009). Report on nanotechnology in agrifood, Available at: http://www.observatorynano.eu/project/filesystem/files/FullReportNanotechnologyinAgrifoodMay2009.pdf. Accessed 13 April 2011.
  77. Roco, M. C., & Bainbridge, W. S. (2001). Societal Implications of nanoscience nanotechnology (pp. 3–4). Boston: Kluwer.CrossRefGoogle Scholar
  78. Rouessac, F., & Rouessac, A. (2007). Chemical analysis: Modern instrumentation methods and techniques (2nd ed.). France: Wiley.Google Scholar
  79. Ruozi, B., Tosi, G., Forni, F., Fresta, M., & Vandelli, M. A. (2005). Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. European Journal of Pharmaceutical Sciences, 25(1), 81–89.CrossRefGoogle Scholar
  80. Sadtler, V., Rondon-Gonzalez, M., Acrement, A., Choplin, L., & Marie, E. (2010). PEO-covered nanoparticles by emulsion inversion point (eip) method. Macromolecular Rapid Communications, 31(11), 998–1002.CrossRefGoogle Scholar
  81. Sadurní, N., Solans, C., Azemar, N., & García-Celma, M. J. (2005). Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. European Journal of Pharmaceutical Sciences, 26(5), 438–445.CrossRefGoogle Scholar
  82. Salmah, H., Ismail, H., & Bakar, A. A. (2008). The effects of dynamic vulcanization and compatibilizer on properties of paper sludge-filled polypropylene/ethylene propylene diene terpolymer composites. Journal of Applied Polymer Science, 107(4), 2266–2273.CrossRefGoogle Scholar
  83. Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development—a food industry perspective. Trends in Food Science & Technology, 17(10), 547–556.CrossRefGoogle Scholar
  84. Shefer, A., & Shefer, S. (2003). Novel encapsulation system provides controlled release of ingredients. Food Technology, 57(11).Google Scholar
  85. Shinoda, K., & Saito, H. (1968). The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. Journal of Colloid and Interface Science, 26(1), 70–74.CrossRefGoogle Scholar
  86. Shinoda, K., & Saito, H. (1969). The stability of o/w type emulsions as a function of temperature and the hlb of emulsifiers: the emulsification by pit-method. Journal of Colloid and Interface Science, 30(1), 258–263.CrossRefGoogle Scholar
  87. Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., et al. (2011). Nanoemulsions of [beta]-carotene using a high-energy emulsification-evaporation technique. Journal of Food Engineering, 102(2), 130–135.CrossRefGoogle Scholar
  88. Simunkova, H., Pessenda-Garcia, P., Wosik, J., Angerer, P., Kronberger, H., & Nauer, G. E. (2009). The fundamentals of nano- and submicro-scaled ceramic particles incorporation into electrodeposited nickel layers: Zeta potential measurements. Surface and Coatings Technology, 203(13), 1806–1814.CrossRefGoogle Scholar
  89. Spernath, A., & Aserin, A. (2006). Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Science, 128–130, 47–64.CrossRefGoogle Scholar
  90. Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318.CrossRefGoogle Scholar
  91. Tan, C. P., & Nakajima, M. (2005a). [beta]-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chemistry, 92(4), 661–671.CrossRefGoogle Scholar
  92. Tan, C. P., & Nakajima, M. (2005b). Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of β-carotene nanodispersions prepared by emulsification/evaporation method. Journal of the Science of Food and Agriculture, 85(1), 121–126.CrossRefGoogle Scholar
  93. Thanasukarn, P., Pongsawatmanit, R., & McClements, D. J. (2004). Influence of emulsifier type on freeze-thaw stability of hydrogenated palm oil-in-water emulsions. Food Hydrocolloids, 18(6), 1033–1043.CrossRefGoogle Scholar
  94. The Commission Of The Eureopean Communities (1995). Commission Directive 95/45/EC, Available at: http://ec.europa.eu/food/fs/sfp/addit_flavor/flav13_en.pdf. Accessed 19 May 2011.
  95. The good scents company Available at: http://www.thegoodscentscompany.com/data/rw1287041.html. Accessed 18 May 2011.
  96. Ubbink, J., & Krüger, J. (2006). Physical approaches for the delivery of active ingredients in foods. Trends in Food Science & Technology, 17(5), 244–254.CrossRefGoogle Scholar
  97. Usón, N., Garcia, M. J., & Solans, C. (2004). Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250(1–3), 415–421.CrossRefGoogle Scholar
  98. Velikov, K. P., & Pelan, E. (2008). Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter, 4(10), 1964–1980.CrossRefGoogle Scholar
  99. Velinova, M. J., Staffhorst, R. W. H. M., Mulder, W. J. M., Dries, A. S., Jansen, B. A. J., de Kruijff, B., et al. (2004). Preparation and stability of lipid-coated nanocapsules of cisplatin: Anionic phospholipid specificity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1663(1–2), 135–142.CrossRefGoogle Scholar
  100. Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S., et al. (2011). Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375(1–3), 200–208.CrossRefGoogle Scholar
  101. Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333–349.CrossRefGoogle Scholar
  102. Wang, Z. L. (2000). Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. The Journal of Physical Chemistry. B, 104(6), 1153–1175.CrossRefGoogle Scholar
  103. Weiss, J., Decker, E., McClements, D., Kristbergsson, K., Helgason, T., & Awad, T. (2008). Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophysics, 3(2), 146–154.CrossRefGoogle Scholar
  104. Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.CrossRefGoogle Scholar
  105. Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 24(22), 12758–12765.CrossRefGoogle Scholar
  106. Wulff-Pérez, M., Torcello-Gómez, A., Gálvez-Ruíz, M. J., & Martín-Rodríguez, A. (2009). Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids, 23(4), 1096–1102.CrossRefGoogle Scholar
  107. Yin, L.-J., Chu, B.-S., Kobayashi, I., & Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of [beta]-carotene nanodispersions. Food Hydrocolloids, 23(6), 1617–1622.CrossRefGoogle Scholar
  108. Yuan, Y., Gao, Y., Mao, L., & Zhao, J. (2008). Optimisation of conditions for the preparation of [beta]-carotene nanoemulsions using response surface methodology. Food Chemistry, 107(3), 1300–1306.CrossRefGoogle Scholar
  109. Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of [beta]-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hélder Daniel Silva
    • 1
  • Miguel Ângelo Cerqueira
    • 1
  • António A. Vicente
    • 1
  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations