Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 8, pp 3142–3150 | Cite as

Impact of Legume Flours on Quality and In Vitro Digestibility of Starch and Protein from Gluten-Free Cakes

  • Márcia Arocha Gularte
  • Manuel Gómez
  • Cristina M. RosellEmail author
Original Paper

Abstract

The aim of the study was to investigate the impact of incorporation of different legumes (chickpea, pea, lentil and bean) on quality, chemical composition and in vitro protein and starch digestibility of gluten-free layer cake (rice flour/legume flour, 50:50). The incorporation of legume flours increased the batter viscosity and, with exception of chickpea, resulted in higher specific cake volume than that in control. Chickpea and pea containing cakes had the brightest and the most yellowish crust. The legumes significantly increased the hardness and chewiness in the cakes, except with addition of lentil. Enriched cakes had higher total protein, available proteins, minerals, fat, as well as fiber content with except in the case of chickpeas. Legumes significantly affect the in vitro hydrolysis of starch fractions, decreasing the rapidly digestible starch yielding a reduction in the eGI, except chickpea containing samples. Overall, considering physicochemical properties and nutritional quality, lentil flour incorporation resulting in the best gluten-free cakes.

Keywords

Gluten-free Cake Legume Quality Nutrition Starch hydrolysis 

Notes

Acknowledgements

The authors acknowledge the financial support of the Spanish Ministerio de Ciencia e Innovación (Project AGL 2008–00092 ALI) and the Consejo Superior de Investigaciones Científicas (CSIC).

References

  1. AACC International. (2000). Approved methods of the American Association of Cereal Chemists. St Paul: American Association of Cereal Chemists.Google Scholar
  2. Balandrán-Quintana, R. R., Barbosa-Cánovas, G. V., Zazueta-Morales, J. J., Anzaldúa-Morales, A., & Quintero-Ramos, A. (1998). Functional and nutritional properties of extruded whole pinto bean meal (Phaseolus Vulgaris L.). Journal of Food Science, 63, 113–116.CrossRefGoogle Scholar
  3. Bilgiçli, N., Ibanoglu, S., & Herken, E. N. (2007). Effect of dietary fibre addition on the selected nutritional properties of cookies. Journal of Food Engineering, 78, 86–89.CrossRefGoogle Scholar
  4. Chung, H.-J., Lim, H. S., & Lim, S.-T. (2006). Effect of partial gelatinization and retrogradation on the enzymatic digestion of waxy rice starch. Journal of Cereal Science, 43, 353–359.CrossRefGoogle Scholar
  5. Chung, H., Shin, D., & Lim, S. (2008a). In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International, 41, 579–585.CrossRefGoogle Scholar
  6. Chung, H., Liu, Q., Pauls, K. P., Fan, M. Z., & Yada, R. (2008b). In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 41, 869–875.CrossRefGoogle Scholar
  7. Cureton, P., & Fasano, A. (2009). The increasing incidence of celiac disease and the range of gluten-free products in the marketplace. In E. Gallagher (Ed.), Gluten-free food science and technology. USA: Wiley-Blackwell.Google Scholar
  8. Dartois, A., Singh, J., Kaur, L., & Singh, H. (2010). Influence of guar gum on the in vitro starch digestibility—rheological and microstructural characteristics. Food Biophysics, 5, 149–160.CrossRefGoogle Scholar
  9. Englyst, H. N., Veenstra, J., & Hudson, G. J. (1996). Measurement of rapidly available glucose (RAG) in plant foods: a potential in vitro predictor of the glycaemic response. British Journal of Nutrition, 75, 327–337.CrossRefGoogle Scholar
  10. FAO Food and Nutrition, Paper 77. (2003). Food energy—methods of analysis and conversion factors. Rome: Food and Agriculture Organization of the United Nation.Google Scholar
  11. Gómez, M., Ronda, F., Caballero, P. A., Blanco, C. A., & Rosell, C. M. (2007). Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 21, 167–173.CrossRefGoogle Scholar
  12. Gómez, M., Oliete, B., Rosell, C. M., Pando, V., & Fernández, E. (2008). Studies on cake quality made of wheat–chickpea flour blends. Food Science and Technology, 41, 1701–1709.Google Scholar
  13. Gómez, M., Ruiz-Paris, E., Oliete, B., & Pando, V. (2010). Modelling of texture evolution of cakes during storage. Journal of Texture Studies, 41, 17–33.CrossRefGoogle Scholar
  14. Gómez, M., Manchón, L., Oliete, B., Ruiz, E., & Caballero, P. A. (2010). Adequacy of wholegrain non-wheat flours for layer cake elaboration. LWT—Food Science and Technology, 43, 507–513.Google Scholar
  15. Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17, 427–437.CrossRefGoogle Scholar
  16. Goñi, I., Valdivieso, L., & Gudiel-Urbano, M. (2002). Capacity of edible seaweeds to modify in vitro starch digestibility of wheat bread. Nahrung/Food, 46(1), 18–20.CrossRefGoogle Scholar
  17. Granfeldt, Y., Björck, I., Drews, A., & Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic responses to starch in cereal and legume products. European Journal of Clinical Nutrition, 46, 649–660.Google Scholar
  18. Granfeldt, Y., Liljeberg, H., Drews, A., Newman, R., & Björck, I. (1994). Glucose and insulin responses to barley products: influence of food structure and amylase–amylopectin ratio. American Journal of Clinical Nutrition, 59, 1075–1082.Google Scholar
  19. Hoover, R., & Zhou, Y. (2003). In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes—a review. Carbohydrate Polymers, 54, 401–417.CrossRefGoogle Scholar
  20. Hsu, H. W., Vavak, D. L., Satterlee, L. D., & Miller, G. A. (1977). A multienzyme technique for estimating protein digestibility. Journal of Food Science, 42, 1269–1273.CrossRefGoogle Scholar
  21. Lazaridou, A., & Biliaderis, C. B. (2009). Gluten-free doughs: rheological properties, testing procedures–methods and potential problems. In E. Gallagher (Ed.), Gluten-free food science and technology. USA: Wiley-Blackwell.Google Scholar
  22. Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79, 1033–1047.CrossRefGoogle Scholar
  23. Marco, C., & Rosell, C. M. (2008). Breadmaking performance of protein enriched gluten free breads. European Food Research and Technology, 227, 1205–1213.CrossRefGoogle Scholar
  24. Oliete, B., Pérez, G. T., Gómez, M., Ribotta, P. D., Moiraghi, M., & Léon, A. E. (2010). Use of wheat, triticale and rye flours in layer cake production. International Journal of Food Science & Technology, 45, 697–706.CrossRefGoogle Scholar
  25. Osorio-Díaz, P., Agama-Acevedo, E., Mendoza-Vinalay, M., Tovar, J., & Bello-Pérez, L. A. (2008). Pasta added with chickpea flour: chemical composition, in vitro starch digestibility and predicted glycemic index. Ciencia y Tecnología Alimentaria, 6, 6–12.CrossRefGoogle Scholar
  26. Roberts, S. B. (2000). High-glycemic index foods, hunger, and obesity: is there a connection? Nutrition Reviews, 58, 163–169.CrossRefGoogle Scholar
  27. Ronda, F., Oliete, B., Gómez, M., Caballero, P. A., & Pando, V. (2011). Rheological study of layer cake batters made with soybean protein isolate and different starch sources. Journal of Food Engineering, 102, 272–277.CrossRefGoogle Scholar
  28. Rosell, C. M., & Gómez, M. (2006). Rice. In Y. H. Hui (Ed.), Bakery products: Science and technology (pp. 123–133). Ames: Blackwell.CrossRefGoogle Scholar
  29. Sanz, T., Salvador, A., Baixauli, R., & Fiszman, S. M. (2009). Evaluation of four types of resistant starch in muffins: II. Effects in texture, colour and consumer response. European Food Research and Technology, 229, 197–204.CrossRefGoogle Scholar
  30. Schober, T. (2009). Manufacture of gluten-free specialty breads and confectionery products. In E. Gallagher (Ed.), Gluten-free food science and technology. Wiley-Blackwell: USA.Google Scholar
  31. Turabi, E., Sumnu, G., & Sahin, S. (2008). Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22, 305–312.CrossRefGoogle Scholar
  32. Thompson, T. (2000). Folate, iron and dietary fibre contents of the gluten-free diet. Journal of the American Dietetic Association, 1000, 1389–1396.CrossRefGoogle Scholar
  33. Thompson, T. (2009). The nutritional quality of gluten-free foods. In E. Gallagher (Ed.), Gluten-free food science and technology. USA: Wiley-Blackwell.Google Scholar
  34. Utrilla-Coello, R. G., Osorio-Díaz, P., & Bello-Pérez, L. A. (2007). Alternative use of chickpea flour in breadmaking: chemical composition and starch digestibility of bread. Food Science Technology International, 13, 323–327.CrossRefGoogle Scholar
  35. Yang, X., & Foegeding, E. A. (2010). Effects of sucrose on egg white protein and whey protein isolate foams: factors determining properties of wet and dry foams (cakes). Food Hydrocolloids, 24, 227–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Márcia Arocha Gularte
    • 1
    • 2
  • Manuel Gómez
    • 3
  • Cristina M. Rosell
    • 1
    Email author
  1. 1.Food Science DepartmentInstitute of Agrochemistry and Food Technology (IATA-CSIC)PaternaSpain
  2. 2.Food Science Department (UFPel-DCA)University Federal of PelotasPelotasBrazil
  3. 3.Departamento de Ingeniería Agrícola y Forestal, Tecnología de los Alimentos, E.T.S. Ingenierías AgrariasUniversidad de ValladolidValladolidSpain

Personalised recommendations