Food and Bioprocess Technology

, Volume 5, Issue 6, pp 2098–2110 | Cite as

Multi-Objective Optimization of Osmotic–Ultrasonic Pretreatments and Hot-Air Drying of Quince Using Response Surface Methodology

  • Mohammad Noshad
  • Mohebbat Mohebbi
  • Fakhri Shahidi
  • Seyed Ali Mortazavi
Original Paper

Abstract

In this study, application of a multi-objective optimization technique based on response surface methodology has been presented. Quince slices were dehydrated using osmotic dehydration with sucrose solutions at different concentration (40 and 60 Brix), processing time (1, 1.5, and 2 h), and ultrasonication time (0, 15, and 30 min) were the factors investigated with respect to water loss, solid gain, and weight reduction. Response surface methodology was used to determine the optimum processing conditions that yield maximum water loss and weight reduction and minimum solid gain during osmotic dehydration of quinces. Dehydrated quince slices at optimized osmo-ultrasound condition were then subjected to air-drying at 60 and 80 °C. Rehydration ratio, shrinkage, and moisture content of dried samples were regarded as responses to the non-thermal and air-drying conditions. Multi-objective optimization led to obtaining the best condition for production of dried quince slices with lowest moisture content, and shrinkage.

Keywords

Air-drying Optimization Quince Response surface methodology Ultrasonic–osmotic dehydration 

References

  1. Alam, M. S., Amarjit, S., & Sawhney, B. K. (2010). Response Surface Optimization of Osmotic Dehydration Process for Aonla Slices. Journal of Food Science and Technology, 47(1), 47–54.CrossRefGoogle Scholar
  2. Antonio, G. C., Alves, D. G., Azoubel, P. M., Murr, F. E. X., & Park, K. J. (2008). Influence of Osmotic Dehydration and High Temperature Short Time Processes on Dried Sweet Potato (Ipomoea Batatas Lam.). Journal of Food Engineering, 84(3), 375–82.CrossRefGoogle Scholar
  3. AOAC. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists. Washington, DC: AOAC.Google Scholar
  4. Ayensu, A. (1997). Dehydration of Food Crops Using a Solar Dryer with Convective Heat Flow. Solar Energy, 59(4–6), 121–26.CrossRefGoogle Scholar
  5. Azoubel, P. M., El-Aouar, Â. A., Tonon, R. V., Kurozawa, L. E., Antonio, G. C., Murr, F. E. X., et al. (2009). Effect of Osmotic Dehydration on the Drying Kinetics and Quality of Cashew Apple. International Journal of Food Science & Technology, 44(5), 980–86.CrossRefGoogle Scholar
  6. Barbanti, D., Mastrocola, D., & Severini, C. (1994). Air Drying of Plums. A Comparison among Twelve Cultivars. Sciences des aliments, 14(1), 61–73.Google Scholar
  7. Bchir, B., Besbes, S., Karoui, R., Attia, H., Paquot, M., & Blecker, C. (2011). Effect of Air-Drying Conditions on Physico-Chemical Properties of Osmotically Pre-Treated Pomegranate Seeds. Food and Bioprocess Technology. doi:10.1007/s11947-010-0469-31-13.Google Scholar
  8. Chakraborty, S. K., Kumbhar, B. K., & Sarkar, B. C. (2007). Process Parameter Optimization for Instant Pigeonpea Dhal Using Response Surface Methodology. Journal of Food Engineering, 81(1), 171–78.CrossRefGoogle Scholar
  9. Corzo, O., Bracho, N., Vasquez, A., & Pereira, A. (2008). Optimization of a Thin Layer Drying Process for Coroba Slices. Journal of Food Engineering, 85(3), 372–80.CrossRefGoogle Scholar
  10. Corzo, O., & Gomez, E. R. (2004). Optimization of Osmotic Dehydration of Cantaloupe Using Desired Function Methodology. Journal of Food Engineering, 64(2), 213–19.CrossRefGoogle Scholar
  11. De la Fuente-Blanco, S., de Sarabia Riera-Franco, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). "Food Drying Process by Power Ultrasound". Ultrasonics, 44, e523–e27.CrossRefGoogle Scholar
  12. Emadzadeh, B., Razavi, S. M. A., & Mahallati, M. N. (2011). Effects of Fat Replacers and Sweeteners on the Time-Dependent Rheological Characteristics and Emulsion Stability of Low-Calorie Pistachio Butter: A Response Surface Methodology. Food and Bioprocess Technology. doi:10.1007/s11947-010-0490-61-11.Google Scholar
  13. Erbay, Z., & Icier, F. (2009). Optimization of Hot Air Drying of Olive Leaves Using Response Surface Methodology. Journal of Food Engineering, 91(4), 533–41.CrossRefGoogle Scholar
  14. Eren, I., & Kaymak-Ertekin, F. (2007). Optimization of Osmotic Dehydration of Potato Using Response Surface Methodology. Journal of Food Engineering, 79(1), 344–52.CrossRefGoogle Scholar
  15. Fermin, W. J., & Corzo, O. (2005). Optimization of Vacuum Pulse Osmotic Dehydration of Cantaloupe Using Response Surface Methodology. Journal of Food Processing and Preservation, 29(1), 20–32.CrossRefGoogle Scholar
  16. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of Osmotic Dehydration and Ultrasound Pre-Treatment on Cell Structure: Melon Dehydration. LWT Food Science and Technology, 41(4), 604–10.CrossRefGoogle Scholar
  17. Garrote, R. L., Coutaz, V. R., Luna, J. A., Silva, E. R., & Bertone, R. A. (1993). Optimizing Processing Conditions for Chemical Peeling of Potatoes Using Response Surface Methodology. Journal of Food Science, 58(4), 821–26.CrossRefGoogle Scholar
  18. Guillou, A. A., & Floros, J. D. (1993). Multiresponse Optimization Minimizes Salt in Natural Cucumber Fermentation and Storage. Journal of Food Science, 58(6), 1381–89.CrossRefGoogle Scholar
  19. Johnson, P. N., Brennan, J. G., & Addo-Yobo, F. Y. (1998). Air-Drying Characteristics of Plantain (Musa Aab). Journal of Food Engineering, 37(2), 233–42.CrossRefGoogle Scholar
  20. Ko, B., Eren, I., & Kaymak Ertekin., F. (2008). Modelling Bulk Density, Porosity and Shrinkage of Quince During Drying: The Effect of Drying Method. Journal of Food Engineering, 85(3), 340–49.CrossRefGoogle Scholar
  21. Lenart, A. (1996). Osmo-Convective Drying of Fruits and Vegetables: Technology and Application. Drying Technology, 14(2), 391–413.CrossRefGoogle Scholar
  22. Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of Vacuum Microwave, Air and Freeze Dried Carrot Slices. Food Research International, 31(2), 111–17.CrossRefGoogle Scholar
  23. Lombard, G. E., Oliveira, J. C., Fito, P., & Andrés, A. (2008). Osmotic Dehydration of Pineapple as a Pre-Treatment for Further Drying. Journal of Food Engineering, 85(2), 277–84.CrossRefGoogle Scholar
  24. Madamba, P. S. (2002). The Response Surface Methodology: An Application to Optimize Dehydration Operations of Selected Agricultural Crops. Lebensmittel-Wissenschaft und Technologie, 35(7), 584–92.Google Scholar
  25. Pani, P., Leva, A. A., Riva, M., Maestrelli, A., & Torreggiani, D. (2008). Influence of an Osmotic Pre-Treatment on Structure-Property Relationships of Air-Dehydrated Tomato Slices. Journal of Food Engineering, 86(1), 105–12.CrossRefGoogle Scholar
  26. Povey, M. J. W., & Mason, T. J. (1998). Ultrasound in Food Processing. Dordrecht: Springer.Google Scholar
  27. Sharma, G. P., & Prasad, S. (2006). Optimization of Process Parameters for Microwave Drying of Garlic Cloves. Journal of Food Engineering, 75(4), 441–46.CrossRefGoogle Scholar
  28. Shi, Q. L., Xue, C. H., Zhao, Y., Li, Z. J., Wang, X. Y., & Luan, D. L. (2008). Optimization of Processing Parameters of Horse Mackerel (Trachurus Japonicus) Dried in a Heat Pump Dehumidifier Using Response Surface Methodology. Journal of Food Engineering, 87(1), 74–81.CrossRefGoogle Scholar
  29. Sosa, N., Salvatori, D. M., & Schebor, C. (2011). Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods. Food and Bioprocess Technology. doi:10.1007/s11947-010-0468-41-13.Google Scholar
  30. Tarleton, E. S. (1992). The Role of Field-Assisted Techniques in Solid/Liquid Separation. Filtration & Separation, 29(3), 246–52.CrossRefGoogle Scholar
  31. Tarleton, E. S., & Wakeman, R. J. (1998). Ultrasonically Assisted Separation Process. Ultrasounds in Food Processing. London: Blackie.Google Scholar
  32. Varnalis, A. I., Brennan, J. G., MacDougall, D. B., & Gilmour, S. G. (2004). Optimisation of High Temperature Puffing of Potato Cubes Using Response Surface Methodology. Journal of Food Engineering, 61(2), 153–63.CrossRefGoogle Scholar
  33. Yao, N., Floros, J. D., & Seetharaman, K. (2007). Optimisation of Hard Pretzel Production. International Journal of Food Science & Technology, 42(3), 269–80.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Mohammad Noshad
    • 1
  • Mohebbat Mohebbi
    • 1
  • Fakhri Shahidi
    • 1
  • Seyed Ali Mortazavi
    • 1
  1. 1.Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran

Personalised recommendations