Food and Bioprocess Technology

, Volume 5, Issue 6, pp 2529–2539 | Cite as

Aroma Recovery in Wine Dealcoholization by SCC Distillation

  • Yulissa Y. Belisario-Sánchez
  • Amaury Taboada-Rodríguez
  • Fulgencio Marín-Iniesta
  • Asunción Iguaz-Gainza
  • Antonio López-Gómez
Original Paper

Abstract

The aroma recovery in wine dealcoholization by spinning cone column (SCC) distillation technique has been studied, with the analysis of the influence of the process factors: raw wine flow rate and aromatic extraction percentage. This aroma recovery has been measured in terms of aromatic richness (number of peaks obtained in the chromatogram) and aromatic intensity (total peaks area of the chromatogram) using the parameters global aromatic intensity (Iga) and aromatic concentration factor. The headspace solid-phase microextraction method and gas chromatography have been used for the determination of the aromatic compounds in raw wine and in the corresponding dealcoholized wine and the aromatic fraction separated during the SCC distillation. The optimal conditions for SCC distillation process were selected as the ones that separate the aromatic fraction with the highest Iga and the highest aromatic richness (percentage of recovered peaks) as well as with the lowest ethanol content.

Keywords

SCC distillation Dealcoholized wine Aroma recovery 

References

  1. Anonymous. 2007. EU proposes using wine surplus for bioethanol. Food & Drink Weekly, July 16. http://weekend.entrepreneur.com/tradejournals/article/166696407.html. Accessed on: 10 May 2010.
  2. Balasubramanian, S., & Panigrahi, S. (2010). Solid-phase microextraction (SPME) techniques form quality characterization of food products: A review. Food and Bioprocess Technology. doi:10.1007/s11947-009-0299-3.Google Scholar
  3. Belisario-Sánchez, Y. Y., Taboada-Rodríguez, A., Marín-Iniesta, F., & López-Gómez, A. (2009). Dealcoholized wines by spinning cone column distillation: Phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. Journal of Agricultural and Food Chemistry, 57(15), 6770–6778.CrossRefGoogle Scholar
  4. Bisson, L. F., Waterhouse, A. L., Ebeler, S. E., Walker, M. A., & Lapsley, J. T. (2002). The present and future of the international wine industry. Nature, 418, 696–699.CrossRefGoogle Scholar
  5. Bosch-Fusté, J., Riu-Aumatell, M., Guadayol, J. M., Caixach, J., López-Tamames, E., & Buxaderas, S. (2007). Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography-mass spectrometry (GC-MS) analysis. Food Chemistry, 105, 428–435.CrossRefGoogle Scholar
  6. Botelho, G., Caldeira, I., Mendes-Faia, A., & Clímaco, M. C. (2007). Evaluation of two quantitative gas chromatography-olfactometry methods for clonal red wines differentiation. Flavour and Fragance Journal, 22, 414–420.CrossRefGoogle Scholar
  7. Buttery, B. G., Turnbaugh, J. G., & Ling, L. C. (1988). Contribution of volatiles to rice aroma. Journal of Agricultural and Food Chemistry, 36, 1006–1009.CrossRefGoogle Scholar
  8. Buttery, B. G., Teranishi, R., Ling, L. C., & Turnbaugh, J. G. (1990). Quantitative and sensory studies on tomato paste volatiles. Journal of Agricultural and Food Chemistry, 38, 336–340.CrossRefGoogle Scholar
  9. Campo, E., Ferreira, V., Escudero, A., Marqués, J. C., & Cacho, J. (2006). Quantitative gas chromatography-olfactometry and chemical quantitative study of de aroma of four Madeira wine. Analytica Chimica Acta, 563, 180–187.CrossRefGoogle Scholar
  10. Chinaud, N., Broussous, P., & Ferrari, G. (1991). Application de l’osmose inverse à la désalcoolisation des vins. Journal International des Sciences de la Vigne et du Vin, 25, 245.Google Scholar
  11. Coelho, E., Coimbra, M. A., Nogueira, J. M. F., & Rocha, S. M. (2009). Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Analytica Chimica Acta, 635, 214–221.CrossRefGoogle Scholar
  12. Cullere, L., Escudero, A., Cacho, J., & Ferreira, V. (2004). Gas chromatograpy-olfactory and chemical qualitative study of the aroma of six premium quality Spanish aged red wines. Journal of Agricultural and Food Chemistry, 52, 1653–1660.CrossRefGoogle Scholar
  13. Demyttenaere, J. C. R., Dagher, C., Sandra, P., Kallithraka, S., Verhé, R., & De Kimpe, N. (2003). Flavour analysis of Greek white wine by solid-phase microextraction-capillary gas chromatography-mass spectrometry. Journal of Chromatography A, 985, 233–246.CrossRefGoogle Scholar
  14. Diban, N., Athes, V., Nes, M., & Souchon, I. (2008). Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor. Journal of Membrane Science, 311, 136–146.CrossRefGoogle Scholar
  15. Donoso-Bravo, A., Rosenkranz, F., Valdivia, V., Torrijos, M., Ruiz-Filippi, G., & Chamy, R. (2009). Anaerobic sequencing batch reactor as an alternative for the biological treatment of wine distillery effluents. Water Science and Technology, 60(5), 1155–1160.CrossRefGoogle Scholar
  16. Etiévant, P. X. (1991). Wine. In H. Maarse (Ed.), Volatile compounds in foods and beverages (pp. 483–546). Marcel Dekker: New York.Google Scholar
  17. Fazzalari, F.A. (Ed.). 1978. Compilation of odor and taste threshold data, ASTM Data Series DS 48A.Google Scholar
  18. Ferreira, V., Aznar, M., López, R., & Cacho, J. (2001). Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality Spanish aged red wines. Journal of Agricultural and Food Chemistry, 49, 4818–4824.CrossRefGoogle Scholar
  19. García-Jares, C., García-Martín, S., & Cela-Torrijos, R. (1995). Analysis of some highly volatile compounds of wine by means of purge and cold trapping injector capillary gas chromatography. Application to the differentiation of Rias Baixas Spanish white wines. Journal of Agricultural and Food Chemistry, 43, 764–768.CrossRefGoogle Scholar
  20. Gómez-Mínguez, M. J., Cacho, J., Ferreira, V., Vicario, I. M., & Heredia, F. (2007). Volatile components of Zalema white wines. Food Chemistry, 100, 1464–1473.CrossRefGoogle Scholar
  21. Guth, H. (1997). Quantification and sensory studies of character impact odorants of different white wines varieties. Journal of Agricultural and Food Chemistry, 45, 3027–3032.CrossRefGoogle Scholar
  22. Harder, T., & Sykes, S. (1999). Comparison of a spinning cone column and other distillation columns. Food Australia, 51, 469.Google Scholar
  23. Hua, L., Yong-Sheng, T., Hua, W., & Li, Z. (2008). Impact odorants of chardonnay dry white wine from Changli County (China). European Food Research and Technology, 227, 287–292.CrossRefGoogle Scholar
  24. Ibarz, M. J., Ferreira, V., Hernádez-Orte, P., Loscos, N., & Cacho, J. (2006). Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavour precursors extracted from grapes. Journal of Chromatography A, 1116, 217–229.CrossRefGoogle Scholar
  25. Li, H. (2006). Wine tasting (pp. 29–106). Beijing: China Science Press.Google Scholar
  26. López, R., Aznar, M., Cacho, J., & Ferreira, V. (2002). Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 966, 167–177.CrossRefGoogle Scholar
  27. Louli, V., Ragoussis, N., & Magoulas, K. (2004). Recovery of phenolic antioxidants from wine industry by-products. Bioresource Technology, 92, 201–208.CrossRefGoogle Scholar
  28. Macedo, S., Fernandez, S. L., de Sousa, H. C., Pereira, P. J., Carmelo, P. J., et al. (2008). Recovery of wine-must aroma compounds by supercritical CO2. Food and Bioprocess Technology, 1, 74–81.CrossRefGoogle Scholar
  29. Makarytchev, S. V., Langrish, T. A. G., & Prince, R. H. G. (1998). Structure and regimes of liquid film flow in spinning cone columns. Chemical Engineering Science, 53, 1451–1550.CrossRefGoogle Scholar
  30. Makarytchev, S. V., Langrish, T. A. G., & Fletcher, D. F. (2004). Mass transfer analysis of spinning cone column using CFD. Chemical Engineering Research and Design, 82, 752.CrossRefGoogle Scholar
  31. Makarytchev, S. V., Langrish, T. A. G., & Fletcher, D. F. (2005). Exploration of spinning cone column capacity and mass transfer performance using CFD. Chemical Engineering Research and Design, 83, 1372–1380.CrossRefGoogle Scholar
  32. Noguerol-Pato, R., González-Barreiro, C., Cancho-Grande, B., & Simal-Gádara, J. (2009). Quantitative determination and characterization of the main odourants of Mencía monovarietal red wines. Food Chemistry, 117, 473–484.CrossRefGoogle Scholar
  33. Pickering, G. L. (2000). Low- and reduced-alcohol wine (a review). Journal of Wine Research, 2, 129–144.CrossRefGoogle Scholar
  34. Prince, R. G. H., Desho, S. Y., & Langrish, T. A. G. (1997). Spinning cone column capacity and mass transfer performance. International Chemical Engineering Symposium Series, 142, 769–781.Google Scholar
  35. Rodríguez-Bencomo, J. J., Conde, J. E., Rodríguez-Delgado, M. A., García-Montelongo, F., & Pérez-Trujillo, J. P. (2002). Determination of esters in dry and sweet solid-phase microextraction and gas chromatography. Journal of Chromatography A, 963(1–2), 213–223.CrossRefGoogle Scholar
  36. Romanowicz, G. 2006. Rivers of unwanted wine to turn into biofuel. Edie newsroom, http://www.edie.net/news/news_story.asp?id=11558&channel=0, paper from 8 June 2006. Accessed on: 10 May 2010.
  37. Scram, I., Hall, D. O., & Stuckey, D. C. (1993). Bioethanol from grapes in the European community. Biomass and Bioenergy, 5(5), 347–358.CrossRefGoogle Scholar
  38. Takeoka, G., Buttery, R. G., Flath, R. A., Teranishi, R., Wheeler, E. L., Wieczorek, R. L., et al. (1989). In R. Teranishi, R. G. Buttery, & Shahidi (Eds.), Volatile constituents of pineapple in flavor chemistry: Trends and developments, ACS Symp. Series 388 (pp. 221–237). Washington DC: ACS.Google Scholar
  39. Takeoka, G. R., Flath, R. A., Mon, T. R., Teranishi, R., & Guentert, M. (1990). Volatile constituents of apricot (Prunus armeniaca). Journal of Agricultural and Food Chemistry, 38, 471–477.CrossRefGoogle Scholar
  40. Varavuth, S., Jiraratananon, R., & Atchariyawut, S. (2009). Experimental study on dealcoholization of wine by osmotic distillation process. Separation and Purification Technology, 66, 313–321.CrossRefGoogle Scholar
  41. Vesely, P., Lusk, L., Basarova, G., Seabrooks, J., & Ryder, D. (2003). Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 51, 6941–6944.CrossRefGoogle Scholar
  42. Villatoro, C., López, M. L., Echevarria, G., & Graell, J. (2009). Effect of controlled atmospheres and shelf life period on concentrations of volatile substances released by ‘Pink Lady®’ apples and on consumer acceptance. Journal of the Science of Food and Agriculture, 89, 1023–1034.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Yulissa Y. Belisario-Sánchez
    • 1
  • Amaury Taboada-Rodríguez
    • 2
  • Fulgencio Marín-Iniesta
    • 2
  • Asunción Iguaz-Gainza
    • 1
  • Antonio López-Gómez
    • 1
  1. 1.Department of Food Engineering and Agricultural EquipmentTechnical University of CartagenaCartagenaSpain
  2. 2.Department of Food Technology, Nutrition and BromatologyUniversity of MurciaMurciaSpain

Personalised recommendations