Food and Bioprocess Technology

, Volume 5, Issue 6, pp 2222–2232 | Cite as

Study of Antioxidant Capacity and Quality Parameters in An Orange Juice–Milk Beverage After High-Pressure Processing Treatment

  • Francisco J. Barba
  • Clara Cortés
  • María J. Esteve
  • Ana Frígola
Original Paper

Abstract

The aim of this study was to obtain a beverage with a high content of bioactive compounds. Therefore, a mixture of orange juice and milk was prepared. The effect of high-pressure processing (HPP), four different pressures (100, 200, 300, and 400 MPa), four treatment times for each pressure (120, 300, 420, and 540 s) on antioxidant compounds, and quality parameters was studied. The effects of HPP treatment were compared with those of thermal treatment (90 °C for 15, 21 s and 98 °C for 15, 21 s). Ascorbic acid retention in the orange juice–milk beverage was higher than 91% in all cases after HPP. There was a significant increase (p < 0.05) in phenolic compounds at 100 MPa/420 s, however at 400 MPa/540 s, it was observed a non-significant decrease. Total carotenoid content was significantly higher in all samples treated by HPP when treatment time was 420 and 540 s. Color changes increased when pressure and treatment times were higher, with the highest difference appearing at 400 MPa/540 s, but HPP had a smaller effect on total color changes than thermal processing. A 5-log reduction of Lactobacillus plantarum CECT 220 was obtained in the orange juice–milk beverage after HPP (200 MPa, 300 s), and this was compared with treatment at 90 °C (15 s), the heat treatment most effective at preserving ascorbic acid.

Keywords

High-pressure processing Orange juice–milk Bioactive compounds Total antioxidant capacity Color 

References

  1. Adapa, S., Schmidt, K. A., & Toledo, R. (1997). Functional properties of skim milk processed with continuous high pressure throttling. Journal of Dairy Science, 80, 1941–1948.CrossRefGoogle Scholar
  2. Amiot, M. J., Fleuriet, A., Cheynier, V., & Nicolas, J. (1997). Phenolic compounds and oxidative mechanisms in fruits and vegetables. In F. A. Tomás-Barberán & R. J. Robins (Eds.), Phytochemistry of fruit and vegetables (pp. 51–85). Oxford: Science Publications.Google Scholar
  3. Association of the Industry of Juices and Nectars from Fruits and Vegetables (AIJN). (1996). Association of the industry of juices and nectars of the European economic community code of practice for evaluation of fruit and vegetable juices. Brussels: AIJN.Google Scholar
  4. Ayhan, Z., Yeom, H. W., Zhang, Q. H., & Min, D. B. (2001). Flavor, color and vitamin C retention of pulsed electric field processed orange juice in different packaging materials. Journal of Agricultural and Food Chemistry, 49, 669–674.CrossRefGoogle Scholar
  5. Barba, F. J., Esteve, M. J., & Frigola, A. (2010). Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. Journal of Agricultural and Food Chemistry, 58(18), 10070–10075.CrossRefGoogle Scholar
  6. Braddock, R. J. (1999). Single strength orange juices and concentrate. In R. J. Braddock (Ed.), Handbook of Citrus By-Products and Processing Technology (pp. 53–83). New York: Wiley.Google Scholar
  7. Bull, M. K., Zerdin, K., Howe, E., Goicoechea, D., Paramanandhan, P., Stockman, R., et al. (2004). The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innovative Food Science and Emerging Technology, 5, 135–149.CrossRefGoogle Scholar
  8. Butz, P., Keller, W. D., Tauscher, B., & Wolf, S. (1994). Ultra-high pressure processing of onions: chemical and sensory changes. Lebensmittel-Wissenschaft und- Technologie, 27(5), 463–467.CrossRefGoogle Scholar
  9. Butz, P., Fernández García, A., Lindale, R., Dietrich, S., Bogart, A., & Tauscher, B. (2003). Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, 56(2–3), 233–236.CrossRefGoogle Scholar
  10. Calvo, C. (2004). Optical properties. In L. M. L. Nollet (Ed.), Handbook of food analysis. Physical characterization and nutrient analysis (pp. 1–19). New York: Marcel Dekker, Inc.Google Scholar
  11. Chen, J., Lindmark-Mansson, H., Gorton, L., & Akesson, B. (2003). Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. International Dairy Journal, 13, 927–935.CrossRefGoogle Scholar
  12. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies, 9(1), 85–91.CrossRefGoogle Scholar
  13. Cortés, C., Esteve, M. J., & Frígola, A. (2008). Color of orange juice treated by high intensity pulsed electric fields during refrigerated storage and comparison with pasteurized juice. Food Control, 19(2), 151–158.CrossRefGoogle Scholar
  14. Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7, 49–54.CrossRefGoogle Scholar
  15. Daoudi, L., Quevedo, J. M., Trujillo, A. J., Capdevila, F., Bartra, E., Mínguez, S., et al. (2002). Effects of high-pressure treatment on the sensory quality of white grape juice. High Pressure Research, 22, 705–709.CrossRefGoogle Scholar
  16. De Ancos, B., González, E., & Cano, M. P. (2000). Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. Journal of Agricultural and Food Chemistry, 48, 3542–3548.CrossRefGoogle Scholar
  17. De Ancos, B., Sgroppo, S., Plaza, L., & Cano, M. P. (2002). Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. Journal of the Science of Food Agriculture, 82, 790–796.CrossRefGoogle Scholar
  18. Dede, S., Alpas, H., & Bayindirli, A. (2007). High hydrostatic pressure treatment and storage of carrots and juices: Antioxidant activity and microbial safety. Journal of the Science of Food and Agriculture, 87, 773–872.CrossRefGoogle Scholar
  19. Del Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99–105.CrossRefGoogle Scholar
  20. Elez-Martínez, P., & Martín-Belloso, O. (2007). Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 102(1), 201–209.CrossRefGoogle Scholar
  21. Esteve, M. J., & Frígola, A. (2008). The effects of thermal and non-thermal processing on vitamin C, carotenoids, phenolic compounds and total antioxidant capacity in orange juice. In N. Benkeblia & P. Tennant (Eds.), Citrus I. Tree and Foresting Science and Biotechnology (pp. 128–134). Isleworth: GSB Publisher.Google Scholar
  22. Esteve, M. J., Farré, R., & Frígola, A. (1996). Stability of ascorbic acid in orange juices after initial use at home begins. Journal of Food Quality, 19, 243–249.CrossRefGoogle Scholar
  23. Fernández García, A., Butz, P., & Tauscher, B. (2000). Does the antioxidant potential of high pressure treated apple juice change during storage? High Pressure Research, 19, 543–550.CrossRefGoogle Scholar
  24. Fernández García, A., Butz, P., & Tauscher, B. (2001). Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose diffusion, and water binding of tomato puree (Lycopersicon esculentum Mill$). Journal of Food Science, 66(7), 1033–1038.CrossRefGoogle Scholar
  25. Fraga, C. G., Motchnik, P. A., Shigenaga, M. K., Helbock, H. J., Jacob, R. A., & Ames, B. N. (1991). Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proceedings of the National Academy of Sciences of the United States of America, 88, 11003–11006.CrossRefGoogle Scholar
  26. Gama, J. J. T., & de Sylos, C. M. (2007). Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice. Food Chemistry, 100(4), 1686–1690.CrossRefGoogle Scholar
  27. Genovese, D. B., Elustondo, M. P., & Lozano, J. E. (1997). Color and cloud stabilization in cloudy apple juice by steam heating during crushing. Journal of Food Science, 62(6), 1171–1175.CrossRefGoogle Scholar
  28. Gervilla, R., Ferragut, V., & Guamis, B. (2001). High hydrostatic pressure effects on color and milk-fat globule of ewe’s milk. Journal of Food Science, 66, 880–885.CrossRefGoogle Scholar
  29. Giannakourou, M. C., & Taoukis, P. S. (2003). Kinetic modeling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chemistry, 83, 33–41.CrossRefGoogle Scholar
  30. Hsu, K. (2008). Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. LWT - Food Science and Technology, 41(3), 450–459.CrossRefGoogle Scholar
  31. Irwe, S., & Olson, I. (1994). Reduction of pectinarase activity in orange juice by high-pressure treatment. In R. P. Sing & F. A. R. Oliveira (Eds.), Minimal processing of foods and process optimization (pp. 35–42). Florida: CRC Press.Google Scholar
  32. Kim, H. Y., Kim, S. H., Choi, M. J., Min, S. G., & Kwak, H. S. (2008). The effect of high pressure-low temperature treatment on physicochemical properties in milk. Journal of Dairy Science, 91(11), 4176–4182.CrossRefGoogle Scholar
  33. Klimczak, I., Małecka, M., Szlachta, M., & Gliszczyńska-Świgło, A. (2007). Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 20(3–4), 313–322.CrossRefGoogle Scholar
  34. Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., & van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies, 4, 377–385.CrossRefGoogle Scholar
  35. Krop, J. J. P., & Pilnik, W. (1974). Effect of pectic acid and bivalent cations on cloud loss of citrus juices. Lebensmittel-Wissenschaft und -Technologie, 7, 62–63.Google Scholar
  36. Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., & Premier, R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry, 101, 1727–1741.CrossRefGoogle Scholar
  37. Landrum, J. T., & Bone, R. A. (2001). Lutein, Zeaxanthin and the Macular Pigment. Archives of Biochemistry and Biophysics, 385, 28–40.CrossRefGoogle Scholar
  38. Lee, H. S., & Castle, W. S. (2001). Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd blood orange juices. Journal Agricultural and Food Chemistry, 49, 877–882.CrossRefGoogle Scholar
  39. Lee, H. S., & Coates, G. A. (1999). Thermal pasteurization effects on color of red grapefruit juices. Journal of Food Science, 64(4), 663–666.CrossRefGoogle Scholar
  40. Lee, H. S., & Coates, G. A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. Food Science and Technology, 36, 153–156.Google Scholar
  41. Lehr, H. A., Frei, B., Olofsson, A. M., Carew, T. E., & Arfors, K. E. (1995). Protection from oxidized LDG-induced leukocyte adhesion to microvascular and macrovascular endothelium in vivo by vitamin C but not vitamin E. Circulation, 91, 1525–1532.CrossRefGoogle Scholar
  42. Linneman, A. R., Meerdink, G., Meulenberg, M. T. C., & Jongen, W. M. F. (1999). Consumer-oriented technology development. Trends in Food Science and Technology, 9, 409–414.Google Scholar
  43. Lo Scalzo, R., Iannoccari, T., Summa, C., Morelli, R., & Rapisarda, P. (2004). Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. Food Chemistry, 85(1), 41–47.CrossRefGoogle Scholar
  44. Luo, Y., & Barbosa-Canovas, G. V. (1997). Enzymatic browning and its inhibition in new apple cultivars slices using 4-hexylresorcinol in combination with ascorbic acid. Food Science and Technology International, 3(3), 195–201.CrossRefGoogle Scholar
  45. McInerney, J. K., Seccafien, C. A., Stewart, C. M., & Bird, A. R. (2007). Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innovative Food Science & Emerging Technologies, 8, 543–548.CrossRefGoogle Scholar
  46. Meléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. A. (2003). Routine high-performance liquid chromatography method for carotenoid determination in ultrafrozen orange juices. Journal of Agricultural and Food Chemistry, 51, 4219–4224.CrossRefGoogle Scholar
  47. Meydav, S., Saguy, I., & Kopelman, I. J. (1977). Browning determination in citrus products. Journal of Agricultural and Food Chemistry, 25(3), 602–604.CrossRefGoogle Scholar
  48. Min, S. K., Jin, Z. T., & Min, S. (2003). Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science, 68(4), 1265–1271.CrossRefGoogle Scholar
  49. Norton, T., & Sun, D. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1(1), 2–34.CrossRefGoogle Scholar
  50. Oey, I., Van der Plancken, I., Van Loey, A., & Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science and Technology, 19, 300–308.CrossRefGoogle Scholar
  51. Orlien, V., Knudsen, J. C., Colon, M., & Skibsted, L. H. (2006). Dynamics of casein micelles in skim milk during and after high pressure treatment. Food Chemistry, 98(3), 513–521.CrossRefGoogle Scholar
  52. Orlien, V., Boserup, L., & Olsen, K. (2010). Casein micelle dissociation in skim milk during high-pressure treatment: Effects of pressure, pH, and temperature. Journal of Dairy Science, 93(1), 12–18.CrossRefGoogle Scholar
  53. Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49, 4619–4626.CrossRefGoogle Scholar
  54. Pagliarini, E., Vernile, M., & Peri, C. (1990). Kinetic study on color changes in milk due to heat. Journal of Food Science, 55(6), 1766–1767.CrossRefGoogle Scholar
  55. Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009a). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313.CrossRefGoogle Scholar
  56. Patras, A., Brunton, N., Da Pieve, S., Butler, F., & Downey, G. (2009b). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, 10(1), 16–22.CrossRefGoogle Scholar
  57. Peña-Ramos, E. A., & Xiong, Y. L. (2001). Antioxidative activity of whey protein. Hydrolyzates in a liposomal system. Journal of Dairy Science, 84, 2577–2583.CrossRefGoogle Scholar
  58. Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2003). Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60(1), 21–29.CrossRefGoogle Scholar
  59. Pszczola, D. E. (2005). Ingredients. Making fortification functional. Food Technology, 59, 44–61.Google Scholar
  60. Quevedo, R., Díaz, O., Caqueo, A., Ronceros, B., & Aguilera, J. M. (2009). Quantification of enzymatic browning kinetics in pear slices using non-homogenous L* color information from digital images. LWT - Food Science and Technology, 42(8), 1367–1373.CrossRefGoogle Scholar
  61. Quitão-Teixeira, L., Aguiló-Aguayo, I., Ramos, A., & Martín-Belloso, O. (2008). Inactivation of oxidative enzymes by high-intensity pulsed electric field for retention of color in carrot juice. Food and Bioprocess Technology, 1(4), 364–373.CrossRefGoogle Scholar
  62. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.CrossRefGoogle Scholar
  63. Ritter, E. D., & Purcell, A. E. (1981). Carotenoid analytical methods. In X. Bauernfeind (Ed.), Carotenoids as Colorants and Vitamin A Precursors (pp. 815–923). New York: Academic.Google Scholar
  64. Rivas, A., Rodrigo, D., Company, B., Sampedro, F., & Rodrigo, M. (2007). Effects of pulsed electric fields on water-soluble vitamins and ACE inhibitory peptides added to a mixed orange juice and milk beverage. Food Chemistry, 104(4), 1550–1559.CrossRefGoogle Scholar
  65. Saldo, J., Suárez-Jacobo, A., Gervilla, R., Guamis, B., & Roig-Sagués, A. X. (2009). Use of ultra-high-pressure homogenization to preserve apple juice without heat damage. International Journal of High Pressure Research, 29, 52–56.CrossRefGoogle Scholar
  66. Sampedro, F., Rivas, A., Rodrigo, D., Martínez, A., & Rodrigo, M. (2007). Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice–milk based beverage: Effect of process parameters. Journal of Food Engineering, 80(3), 931–938.CrossRefGoogle Scholar
  67. Sampedro, F., Rodrigo, D., & Hendrickx, M. (2008). Inactivation kinetics of pectin methyl esterase under combined thermal–high pressure treatment in an orange juice–milk beverage. Journal of Food Engineering, 86(1), 133–139.CrossRefGoogle Scholar
  68. Sampedro, F., Geveke, D. J., Fan, X., & Zhang, H. Q. (2009). Effect of PEF, HHP and thermal treatment on PME inactivation and volatile compounds concentration of an orange juice–milk based beverage. Innovative Food Science & Emerging Technologies, 10(4), 463–469.CrossRefGoogle Scholar
  69. Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2004). Effect of combined treatments of high-pressure and natural additives on carotenoid extractability and antioxidant activity of tomato puree (Lycopersicum esculentum Mill.). European Food Research and Technology, 219(2), 151–160.CrossRefGoogle Scholar
  70. Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.CrossRefGoogle Scholar
  71. Sancho, F., Lambert, Y., Demazeau, G., Largeteau, A., Bouvier, J. M., & Narbonne, J. F. (1999). Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. Journal of Food Engineering, 39(3), 247–253.CrossRefGoogle Scholar
  72. Saucedo-Reyes, D., Marco-Celdrán, A., Pina-Pérez, M. C., Rodrigo, D., & Martínez-López, A. (2009). Modeling survival of high hydrostatic pressure treated stationary-and exponential-phase Listeria innocua cells. Innovative Food Science & Emerging Technologies, 10, 135–141.CrossRefGoogle Scholar
  73. Singleton, V. L., & Rossi, J. A., Jr. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.Google Scholar
  74. Soliva-Fortuny, R. C., Elez-Martínez, P., Sebastián-Calderó, M., & Martín-Belloso, O. (2002). Kinetics of polyphenol oxidase activity inhibition and browning of avocado purée preserved by combined methods. Journal of Food Engineering, 55(2), 131–137.CrossRefGoogle Scholar
  75. Temple, N. J. (2000). Antioxidants and disease: more questions than answers. Nutrition Research, 20, 449–459.CrossRefGoogle Scholar
  76. USFDA CFSAN-FDA (Center for Food and Safety and Applied Nutrition). (2000). Kinetics of microbial inactivation for alternative food processing technlologies. Washington: U.S. Food and Drug Administration.Google Scholar
  77. Zulueta, A., Esteve, M. J., Frasquet, I., & Frígola, A. (2007). Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chemistry, 103, 1365–1374.CrossRefGoogle Scholar
  78. Zulueta, A., Esteve, M. J., & Frígola, A. (2009a). ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 114, 310–316.CrossRefGoogle Scholar
  79. Zulueta, A., Maurizi, A., Frígola, A., Esteve, M. J., Coli, R., & Burini, G. (2009b). Antioxidant capacity of cow milk, whey and deproteinized milk. International Dairy Journal, 19, 380–385.CrossRefGoogle Scholar
  80. Zulueta, A., Esteve, M. J., & Frígola, A. (2010a). Ascorbic acid in orange juice–milk beverage treated by high intensity pulsed electric fields and its stability during storage. Innovative Food Science & Emerging Technologies, 11(1), 84–90.CrossRefGoogle Scholar
  81. Zulueta, A., Barba, F. J., Esteve, M. J., & Frígola, A. (2010b). Effects on the carotenoid pattern and vitamin A of a pulsed electric field-treated orange juice–milk beverage and behavior during storage. European Food Research Technology, 231(4), 525–534.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Francisco J. Barba
    • 1
  • Clara Cortés
    • 1
  • María J. Esteve
    • 1
  • Ana Frígola
    • 1
  1. 1.Área de Nutrición y Bromatología, Facultat de FarmàciaUniversitat de ValènciaBurjassotSpain

Personalised recommendations