Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 1, pp 15–30 | Cite as

Modified Atmosphere Packaging of Pomegranate Fruit and Arils: A Review

  • Oluwafemi James Caleb
  • Umezuruike Linus OparaEmail author
  • Corli R. Witthuhn
Review Paper

Abstract

Ongoing global drive for a healthier diet has led to a rise in demand for convenient and fresh food produce, with high nutritional value and free of additives. Minimally fresh processed fruits and vegetables, satisfies the consumers’ perception of a high nutritional quality and convenience produce. Minimally processed fruit and vegetables are susceptible to increased deterioration in quality and microbial infestation due to increase in endogenous enzymatic processes and respiration rate. Modified atmosphere packaging (MAP) technology offers the possibility to retard produce respiration rate and extend the shelf life of fresh produce. However, it is important to correlate the permeability properties of the packing films with the respiration rate of the produce, in order to avoid anaerobic conditions which could lead into fermentation of produce and accumulation of ethanol. Hence, mathematical prediction modelling is now widely applied in the design and development of effective MAP technology in both whole and minimally processed fresh produce. With increasing global interest in postharvest handling and nutrition value of pomegranate, MAP of minimally processed pomegranate arils offers additional innovative tool for optimal use and value addition, including the utilization of lower-grade fruit with superficial peel defects such as; cracks, splits, and sunburnt. This review paper highlights the current status and applications of modified atmosphere packaging in whole fruit and minimally processed pomegranate arils and identifies future prospects.

Keywords

Pomegranate Fruit and vegetables Modified atmosphere packaging Smart packaging 

Notes

Acknowledgements

The authors are grateful to the NRF/DST South African Research Initiative (SARChI), the Perishable Products Export Control Board (PPECB) and Citrogold South for financial support which made it possible to undertake this study.

References

  1. Adaskaveg, J. E., & Förster, H. (2003). Management of gray mold of pomegranate caused by Botrytis cinerea using two reduced-risk fungicides, fludioxonil and fenhexamid. Phytopathology, 93, S127.CrossRefGoogle Scholar
  2. Aguayo, E., Escalona, V., & Artes, F. (2004). Quality of fresh-cut tomato as affected by type of cut, packaging, temperature and storage time. European Food Research and Technology, 219(5), 492–499.CrossRefGoogle Scholar
  3. Ahvenainen, R., Eilamo, M., & Hurme, E. (1997). Detection of improper sealing and quality deterioration of modified-atmosphere-packaged pizza by a colour indicator. Food Control, 8(4), 177–184.CrossRefGoogle Scholar
  4. Ait-Oubahou, A. (1999). Modified atmosphere packaging of tomato fruit. CIHEAM-Options Mediterraneennes, 42, 103–114.Google Scholar
  5. Al-Said, F. A., Opara, L. U., & Al-Yahyai, R. A. (2009). Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. Journal of Food Engineering, 90, 129–134.CrossRefGoogle Scholar
  6. Al-Yahyai, R., Al-Said, F., & Opara, L. (2009). Fruit growth characteristics of four pomegranate cultivars from northern Oman. Fruits, 64, 1–7.CrossRefGoogle Scholar
  7. Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3, 113–126.Google Scholar
  8. Ares, G., Lareo, C., & Lema, P. (2007). Modified atmosphere packaging for postharvest storage of mushrooms. A review. Fresh Produce, 1(1), 32–40.Google Scholar
  9. Artés, F. (1992). Factores de calidad y conservación frigorífica de la granada. In: II Jornadas Nacionales del Granado. Univ. Politécnica de Valencia, ValenciaGoogle Scholar
  10. Artés, F. (1993). Diseno y cálculo de polímeros sintéticos de interes para la conservación hortofrutícola en atmósfera modificada. In A. Madrid (Ed.), Nuevo curso de ingeniería del frío (pp. 427–454). Murcia: Colegio Oficial de Ingenieros Agronómos de Murcia.Google Scholar
  11. Artés, F., Gómez, P. A., & Artés-Hernández, F. (2006). Modified atmosphere packaging of fruits and vegetables. Stewart Postharvest Review, 5(2), 1–13(13).Google Scholar
  12. Artés, F., & Tomás-Barberán, F. A. (2000). Postharvest technological treatments of pomegranate and preparation of derived products. In: P. Melgarejo-Moreno et al (Eds.), Production, processing and marketing of pomegranate in the Mediterranean Region (pp. 199–204). CIHEAM-Options Mediterraneennes: Série A. Séminaires Méditerranéens no. 42.Google Scholar
  13. Artés, F., Marin, J. G., & Martínez, J. A. (1998). Permeability rates of films for modified atmosphere packaging of respiring foods. In B. M. Nicolaï et al. (Eds.), Food quality (pp. 153–157). Leuven: European Commision.Google Scholar
  14. Artés, F., Conesa, M. A., Hernandez, S., & Gil, M. I. (1999). Keeping quality of fresh-cut tomato. Postharvest Biology and Technology, 17(3), 153–162.CrossRefGoogle Scholar
  15. Artés, F., Tudela, J. A., & Villaescusa, R. (2000a). Thermal postharvest treatment for improving pomegranate quality and shelf life. Postharvest Biology and Technology, 18, 245–251.CrossRefGoogle Scholar
  16. Artés, F., Villaescusa, R., & Tudela, J. A. (2000b). Modified atmosphere packaging of pomegranate. Journal of Food Science, 65(7), 1112–1116.CrossRefGoogle Scholar
  17. Austin, J. W., Dodds, K. L., Blanchfield, B., & Farber, J. M. (1998). Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables. Journal of Food Protection, 61(3), 324–328.Google Scholar
  18. Bayram, E., Dundar, O., & Ozkaya, O. (2009). Effect of different packaging types on storage of Hicaznar pomegranate fruits. In: A. I. Özgüven (Ed.), Proceedings of the 1st IS on pomegranate, vol 818 (pp. 319–322). Acta Horticulturae, ISHS.Google Scholar
  19. Beaudry, R. M. (1999). Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biology and Technology, 37(1), 37–46.Google Scholar
  20. Ben-Arie, R., & Or, E. (1986). The development and control of husk scald on Wonderful pomegranate fruit during storage. Journal of the American Society for Horticultural Science, 111, 395–399.Google Scholar
  21. Ben-Yehoshua, S., & Rodov, V. (2003). Transpiration and water stress. In J. A. Bartz & J. K. Brecht (Eds.), Postharvest physiology and pathology of vegetables (pp. 111–159). New York: Marcel Dekker.Google Scholar
  22. Brecht, J. K. (2006). Controlled atmosphere, modified atmosphere and modified atmosphere packaging for vegetables. Stewart Postharvest Review, 5(2), 1–6(6).Google Scholar
  23. Burton, K. S., Frost, C. E., & Nichols, R. (1987). A combination of plastic permeable films system for controlling post-harvest mushroom quality. Biotechnology Letters, 9, 529–534.CrossRefGoogle Scholar
  24. Cameron, A. C., Beaudry, R. M., Banks, N. H., & Yelanich, M. V. (1994). Modified atmosphere packaging of blueberry fruit: modelling respiration and package oxygen partial pressures as function of temperature. Journal of the American Society for Horticultural Science, 119(3), 534–539.Google Scholar
  25. Cameron, C. A., Talasila, P. C., & Joles, D. W. (1995). Predicting film permeability needs for modified-atmosphere packaging of lightly processed fruits and vegetables. HortScience, 30(1), 25–34.Google Scholar
  26. Charles, F., Sanchez, J., & Gontard, N. (2003). Active modified atmosphere packaging of fresh fruits and vegetables: modeling with tomatoes and oxygen absorber. Journal of Food Science, 68(5), 1736–1742.CrossRefGoogle Scholar
  27. Church, P. N. (1993). Meat and meat products. In R. T. Parry (Ed.), Principles and application of modified atmosphere packaging of food (pp. 170–187). Glasgow: Blackie.Google Scholar
  28. Church, N. (1994). Developments in modified-atmosphere packaging and related technologies. Trends in Food Science and Technology, 5, 345–352.CrossRefGoogle Scholar
  29. Crank, J., & Park, G. S. (1968). Diffusion in polymers. In: Crank et al (eds), pp 360. London: Academic Press.Google Scholar
  30. Cutter, C. N. (2002). Microbial control by packing: A review. Critical Reviews in Food Science and Nutrition, 42(2), 151–161.Google Scholar
  31. D’ Aquino, S., Palma, A., Schirra, M., Continella, A., Tribulato, E., & La Malfa, S. (2010). Influence of film wrapping and fludioxonil application on quality of pomegranate fruit. Postharvest Biology and Technology, 55, 121–128.CrossRefGoogle Scholar
  32. Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science and Technology, 19, S103–S112.Google Scholar
  33. Defilippi, B. G., Whitaker, B. D., Hess-Pierce, B. M., & Kader, A. A. (2006). Development and control of scald on Wonderful pomegranate during long-term storage. Postharvest Biology and Technology, 41, 234–243.CrossRefGoogle Scholar
  34. Du, C. T., Wang, P. L., & Francis, F. J. (1975). Anthocyanins of pomegranate, Punica granatum. Journal of Food Science, 40(2), 417–418.CrossRefGoogle Scholar
  35. Dumlu, M. U., & Gurkan, E. (2007). Elemental and nutritional analysis of Punica granatum from Turkey. Journal of Medical Food, 10(2), 392–395.CrossRefGoogle Scholar
  36. Elyatem, S. M., & Kader, A. A. (1984). Post-harvest physiology and storage behaviour of pomegranate fruits. Scientia Horticulturae, 24, 287–298.CrossRefGoogle Scholar
  37. U.S. Environmental Protection Agency, Federal Register Environmental Documents (2005). Fludioxonil, pesticide tolerance, vol 70 (95). Available at: www.epa.gov/fedrgstr/EPA-PEST/2005/May/Day-18/p9798.htm. Accessed 20 July 2006.
  38. Ergun, M., & Ergun, N. (2009). Maintaining quality of minimally processed pomegranate arils by honey treatments. British Food Journal, 111(4), 396–406.CrossRefGoogle Scholar
  39. Ewaida, E. H. (1987). Nutrient composition of “Taifi” pomegranate (Punica granatum L). Fragments and their suitability for the production of jam. Persian Gulf Science Research Agricultural and Biological Sciences, 3, 367–378.Google Scholar
  40. Exama, A., Arul, J., Lencki, R. W., Lee, L. Z., & Toupin, C. (1993). Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. Journal of Food Science, 58(6), 1365–1370.CrossRefGoogle Scholar
  41. Fadavi, A., Barzegar, M., & Azizi, H. (2006). Determination of fatty acids and total lipid content in oilseed of 25 pomegranate variaties grown in Iran. Journal of Food Composition and Analysis, 19(6), 676–680.CrossRefGoogle Scholar
  42. Fahan, A. (1976). The seed. In: Plant anatomy. Hakkibutz Hameuhad Publication, Jerusalem. pp. 419–430Google Scholar
  43. Farber, J. M. (1991). Microbiological aspects of modified atmosphere packaging—a review. Journal of Food Protection, 54, 58–70.Google Scholar
  44. Farber, J. N., Harris, L. J., Parish, M. E., Beuchat, L. R., Suslow, T. V., Gorney, J. R., et al. (2003). Microbiological safety of controlled and modified atmosphere packaging of fresh and fresh-cut produce. Comprehensive Review in Food Science and Food Safety, 2, 142–160.CrossRefGoogle Scholar
  45. Fonseca, S. C., Oliveira, FAR., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering, 52, 99–119.Google Scholar
  46. García, E., Salazar, D.M., Melgarejo, P., & Coret, A. (2000). Determination of the respiration index and of the modified atmosphere inside the packaging of minimally processed products. CIHEAM-Options Mediterraneennes. pp. 247–251.Google Scholar
  47. Gavara, R., Ramón, C., & Pilar, H.-M. (2009). Extending the shelf-life of fresh-cut produce through active packaging. Stewart Postharvest Review, 5(4), 1–5(5).Google Scholar
  48. Gil, M. I., Artes, F., & Toma-Barberan, F. A. (1996a). Minimal processing and modified atmosphere packaging effects on pigmentation of pomegranate seeds. Journal of Food Science, 61(1), 161–164.CrossRefGoogle Scholar
  49. Gil, M. I., Conesa, M. A., & Artés, F. (2001). Modified atmosphere packaging of fresh-cut tomato. In: Ben-Arie et al (eds) Proceedings of 4th International conference on postharvest, Vol. 553, pp 703–704. Acta Horticulturae, 1SHS.Google Scholar
  50. Gil, M. I., Martínez, J. A., & Artés, F. (1996b). Minimally processed pomegranate seeds. Lebensm Wiss U Technol, 29, 708–713.CrossRefGoogle Scholar
  51. Gontard, N. (2000). Panorama des emballages alimentaires actifs. In N. Gontard (Ed.), Les emballages actifs (pp. 1–29). Paris: Tec & Doc.Google Scholar
  52. Goodrum, P.M., & McLaren, M. (2003). A review of smart chip implementation and pilot project at University of Kentucky: a report to the electrical contracting foundation. Lexington: University of Kentucky, Department of Civil Engineering.Google Scholar
  53. Gorny, J. (1997). CA and MA requirements and recommendations for fresh-cut (minimally processed) fruits and vegetables. In: Proceedings of 7th International controlled atmosphere research conference, vol 5, Davis, California, USA, July 1997.Google Scholar
  54. Goulas, A. E. (2008). Combined effect of chill storage and modified atmosphere packaging on mussels (Mytilus galloprovincialis) preservation. Packaging Technology and Science, 21(5), 247–255.CrossRefGoogle Scholar
  55. Guan Wen, Q., Li, C., Xi, H. L., & Feng, H. Y. (2004). Effect of modified atmosphere packaging on the quality of Fuji apple. Transactions Chinese Society of Agricultural Engineering, 20(5), 218–221.Google Scholar
  56. Hess-Pierce, B., & Kader, A. (2003). Responses of ‘wonderful’ pomegranates to controlled atmosphere. Acta Horticulturae, 600, 751–757.Google Scholar
  57. Holcroft, D. M., Gil, M. I., & Kader, A. A. (1998). Effect of carbon dioxide on anthocyanins, phenylalanine ammonia lyase and glucosyltransferase in the arils of stored pomegranates. Journal of the American Society for Horticultural Science, 123, 136–140.Google Scholar
  58. Holland, D., & Bar-Ya’akov, I. (2008). The pomegranate: new interest in an ancient fruit. Chronica Horticulturae, 48(3), 12–15.Google Scholar
  59. Holland, D., Hatib, K., & Bar-Ya’akov, I. (2009). Pomegranate: botany, horticulture, breeding. In J. Janick (Ed.), Horticultural reviews, vol 35 (pp. 127–191). USA: Wiley.CrossRefGoogle Scholar
  60. Hong, S.-I., & Park, W.-S. (2000). Use of colour indicators as an active packaging system for evaluating kimchi fermentation. Journal of Food Engineering, 46(1), 67–72.CrossRefGoogle Scholar
  61. Inoue, Y., Hatakeyama, H., & Yoshino, I. (1994). Oxygen indicator. US Patent 5358876 (in United States).Google Scholar
  62. Jacomino, A. P., Kluge, R. A., Sarantopoulos, C. I. G. L., & Sigrist, J. M. M. (2001). Evaluation of plastic packages for guava refrigerated preservation. Packaging Technology and Science, 14(1), 11–19.CrossRefGoogle Scholar
  63. Jacxsens, L., Devlieghere, F., De Rudder, T., & Debevere, J. (2000). Designing equilibrium modified atmosphere packages for fresh-cut vegetables subjected to changes in temperature. Lebensmittel-Wissenschaft und-Technologies, 33, 178–187.CrossRefGoogle Scholar
  64. Jayas, D. S., & Jeyamkondan, S. (2002). Modified atmosphere storage of grains meats fruits and vegetables. Biosystems Engineering, 82(3), 235–251.Google Scholar
  65. Joles, D.W. (1993). Modified atmosphere packaging of raspberry and strawberry fruit: characterizing the respiratory response to reduced O2, elevated CO2 and changes in temperature. MS thesis, Michigan State University East Lansing.Google Scholar
  66. Kader, A. A. (1980). Prevention of ripening in fruits by use of controlled atmospheres. Food Technology, 34, 51–54.Google Scholar
  67. Kader, A. A. (1986). Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technology, 40, 99–104.Google Scholar
  68. Kader, A. A. (1995). Regulation of fruits physiology by controlled and modified atmosphere. Acta Horticulturae, 398, 59–70.Google Scholar
  69. Kader, A. A., & Watkins, C. B. (2000). Modified atmosphere packaging—toward 2000 and beyond. HortTechnology, 10(3), 483–486.Google Scholar
  70. Kader, A.A., Chordas, A., & Elyatem, S. (1984). Response of pomegranates to ethylene treatment and storage temperature. California Agriculture, July–August. pp. 14–15.Google Scholar
  71. Kader, A. A., Zagory, D., & Kerbel, E. L. (1989). Modified atmosphere packaging of fruits and vegetables. CRC Critical Reviewers in Food Science and Nutrition, 28, 1–30.CrossRefGoogle Scholar
  72. Kim, K. M., Ko, J. A., Lee, J. S., Park, H. J., & Hanna, M. A. (2006). Effect of modified atmosphere packaging on the shelf-life of coated whole and sliced mushrooms. LWT Food Science and Technology, 39, 364–371.CrossRefGoogle Scholar
  73. Köksal, A. I. (1989). Research on the storage of pomegranate (cv. Gök Bahce) under different conditions. Acta Horticulturae, 258, 295–302.Google Scholar
  74. Krumhar, K.C., & Karel, M. (1992). Visual indicator system. US Patent no 5096813. Massachusetts Institute of Technology (in United States).Google Scholar
  75. Labuza, T. P. (1989). Active food packaging technologies. In W. E. L. Spiess & H. Schubert (Eds.), Preservation processes and related techniques. Engineering and Food, 2 (pp. 304–311). London: Elsevier.Google Scholar
  76. Lakakul, R., Beaudry, R. M., & Hernandez, R. J. (1999). Modeling respiration of apple slices in modified atmosphere packages. Journal of Food Science, 64, 105–110.CrossRefGoogle Scholar
  77. Lange, J., & Wyser, Y. (2003). Recent innovation in barrier technologies for plastic packaging- a Review. Packaging Technology and Science, 16, 149–158.Google Scholar
  78. Lansky, E., Shubert, S., & Neeman, I. (1998). Pharmacological and therapeutical properties of pomegranates. In P. Melgarejo & J. J. Martínez (Eds.), Proceedings of the First International Symposium on Pomegranate (pp. 231–235). Orihuela: CIHEAM.Google Scholar
  79. Lee, L., Arul, J., Lencki, R., & Castaigne, F. (1995). A review on modified atmosphere packaging and preservation of fresh fruits and vegetables: physiological basis and practical aspects- part 1. Packaging Technology Science, 8, 315–331.CrossRefGoogle Scholar
  80. Leistner, L., & Gould, G. (2002). Hurdle technologies: Combination treatments for food stability, safety and quality. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  81. Levin, G. M. (2006). In Baer (Ed.), Pomegranate roads: a Soviet botanist’s exile from Eden (pp. 15–183). Forestville: Floreat Press.Google Scholar
  82. López-Briones, G., Varoquaux, P., Yves, C., Bouquant, J., Bureau, G., & Pascat, B. (1992). Storage of common mushroom under controlled atmospheres. International Journal of Food Science & Technology, 27, 493–505.CrossRefGoogle Scholar
  83. López-Rubira, V., Conesa, A., Allende, A., & Artés, F. (2005). Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biology and Technology, 37, 174–185.CrossRefGoogle Scholar
  84. Mahajan, P. V., Oliveira, F. A. R., Montanez, J. C., & Frias, J. (2007). Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce. Innovative Food Science & Emerging Technologies, 8, 84–92.CrossRefGoogle Scholar
  85. Malhotra, J., & Prasad, D. N. (1999). Role of carbon dioxide in enhancing the microbiological quality of perishable foods: a review. Microbiology Alims Nutritions, 17, 155–168.Google Scholar
  86. Malik, A., Afaq, F., Sarfaraz, S., Adhami, V. M., Syed, D. N., & Mukhtar, H. (2005). Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proceedings of the National Academy of Sciences, 102, 14813–14818.CrossRefGoogle Scholar
  87. Mangaraj, S., Goswami, T. K., & Mahajan, P. V. (2009). Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Engineering Reviews, 1, 133–158.CrossRefGoogle Scholar
  88. Mirdehghan, S. H., Rahemi, M., Castillo, S., Martínez-Romero, D., Serrano, M., & Valero, D. (2007a). Pre-storage application of polyamines by pressure infiltration or immersion improves shelf-life of pomegranate stored at chilling temperature by increasing endogenous polyamine levels. Postharvest Biology and Technology, 44, 26–33.CrossRefGoogle Scholar
  89. Mirdehghan, S. H., Rahemi, M., Serrano, M., Guillén, F., Martínez-Romero, D., & Valero, D. (2007b). The application of polyamines by pressure or immersion as a tool to maintain functional properties in stored pomegranate arils. Journal of Agricultural and Food Chemistry, 55, 755–760.CrossRefGoogle Scholar
  90. Muftuoğlu, F., Ayhan, Z., & Esturk, O. (2010). Modified atmosphere packaging of Kabaaşı Apricot (Prunus armeniaca L. ‘Kabaaşı’): effect of atmosphere, packaging material type and coating on the physicochemical properties and sensory quality. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0482-6.Google Scholar
  91. Nambi, S., Nyalamadugu, S., Wentworth, S.M., & Chin, B.A. (2003). Radio frequency identification sensors. In: Proceedings of 7th World Multiconference on Systemic, Cybernetics and informatics, Dubna, Russia, 30 July–2 August 2003.Google Scholar
  92. Nanda, S., Rao, D. V. S., & Krishnamurthy, S. (2001). Effect of shrink film wrapping and storage temperature on the shelf life and quality of pomegranate fruits cv. Ganesh. Postharvest Biology and Technology, 22, 61–69.CrossRefGoogle Scholar
  93. Neethirajan, S., Jaya, D. S., & Sadistap, S. (2009). Carbon dioxide sensors for the agric-food industry—a review. Food and Bioprocess Technology, 2, 115–121.CrossRefGoogle Scholar
  94. Nerya, O., Gizis, A., Tsvilling, A., Gemarasni, D., Sharabi-Nov, A., & Ben-Arie, R. (2006). Controlled atmosphere storage of pomegranate. Acta Horticulturae, 712, 655–660.Google Scholar
  95. Neurath, A. R., Strick, N., Li, Y., & Debnath, A. K. (2005). Punica granatum (pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. Annals of the New York Academy of Sciences, 1056, 311–327.CrossRefGoogle Scholar
  96. Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin and pelargonidin. Journal of Agricultural and Food Chemistry, 50, 166–171.CrossRefGoogle Scholar
  97. Oms-Oliu, G., Hertog, MLATM, Soliva-Fortuny, R., Martín-Belloso, O., & Nicolaï, B. M. (2009). Recent developments in the use of modified atmosphere packaging for fresh-cut fruits and vegetables. Stewart Postharvest Review, 5(4), 1–11(11).Google Scholar
  98. Onur, C., Pekmezci, M., Tibet, H., Erkan, M., Gözlekci, S., & Tandogan, P. (1992). A research on cold storage of pomegranate cv. Hicaz. 1st National Horticultural Congress of Turkey, Izmir, Turkey, 13–16 Oct. 1992. pp. 449–452.Google Scholar
  99. Opara, L. U., Al-Ani, M. R., & Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2, 315–321.CrossRefGoogle Scholar
  100. Padule, D. N., & Keskar, B. G. (1988). Studies on postharvest treatments for increasing the shelf life of pomegranate fruits. Maharashtra Journal of Horticulture, 4, 73–76.Google Scholar
  101. Palma, A., Schirra, M., D’ Aquino, S., La Malfa, S., & Continella, G. (2009). Chemical properties changes in pomegranate seeds packaged in polypropylene trays. In: A. I. Özgüven (ed.) Proceedings of the 1st IS on pomegranate, vol 818. Acta Horticulturae, ISHS. pp. 1–4Google Scholar
  102. Paul, D. R., & Clarke, R. (2002). Modelling of modified atmosphere packaging based on designs with a membrane and perforations. Journal of Membrane Science, 208, 269–283.Google Scholar
  103. Pereira, L. M., Rodrigues, A. C. C., Sarantópoulos, C. I. G. L., Junqueira, V. C. A., Cunha, R. L., & Hubinger, M. D. (2004). Influence of modified atmosphere packaging and osmotic dehydration on the quality maintenance of minimally processed guavas. Journal of Food Science, 69(4), 172–177.Google Scholar
  104. Pesis, E., Dvir, O., Feygenberg, O., Arie, R. B., Ackerman, M., & Lichter, A. (2002). Production of acetaldehyde and ethanol during maturation and modified atmosphere storage of litchi fruit. Postharvest Biology and Technology, 26, 157–165.CrossRefGoogle Scholar
  105. Petracek, P. D., Joles, D. W., Shirazi, A., & Cameron, A. C. (2002). Modified atmosphere packaging of sweet cherry (Prunus avium L., ev. ‘Sams’) fruit: metabolic responses to oxygen, carbon dioxide, and temperature. Postharvest Biology and Technology, 24, 259–270.CrossRefGoogle Scholar
  106. Phillips, C. A. (1996). Review: modified atmosphere packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science & Technology, 31, 463–479.CrossRefGoogle Scholar
  107. Porat, R., Weiss, B., Fuchs, Y., Sandman, A., & Ward, G. (2009). Modified atmosphere/modified humidity packaging for preserving pomegranate fruit during prolonged storage and transport. In: A. I. Özgüven (ed.) Proceedings of the 1st IS on pomegranate, vol 818. Acta Horticulturae, ISHS. pp. 1–4.Google Scholar
  108. Rai, D. R., Oberoi, H. S., & Baboo, B. (2002). Modified atmosphere packaging and its effect on quality and shelf-life of fruits and vegetable- an overview. Journal of Food Science and Technology, 39(3), 199–207.Google Scholar
  109. Rocha, A. M. C. N., Barreiro, M. G., & Morais, A. M. M. B. (2004). Modified atmosphere package for apple ‘Bravo de Esmolfe’. Journal of Food Control, 15(1), 61–64.CrossRefGoogle Scholar
  110. Rolle, R. S., & Chism, G. W., III. (1987). Physiological consequences of minimally processed fruits and vegetables. Journal of Food Quality, 10, 157–177.CrossRefGoogle Scholar
  111. Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea-history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.CrossRefGoogle Scholar
  112. Roy, S. K., & Wasker, D. P. (1997). Pomegranate. In S. Mitra (Ed.), Postharvest physiology and storage of tropical and subtropical fruits (pp. 365–374). UK: CAB International.Google Scholar
  113. Ryall, A. L., & Pentzer, W. T. (1974). Handling, transportation and storage of fruits and vegetables, vol 2 fruits and tree nuts. Westport: AVI Publishing.Google Scholar
  114. Sadeghi, H., & Akbarpour, V. (2009). Liquid acrylic and polyamide plastic covering affect quality and storability of pomegranate (cv. Malas-e-Saveh). Journal of Food, Agriculture and Environment, 7(3–4), 405–407.Google Scholar
  115. Salunkle, D. K., & Desai, B. B. (1986). Low temperature storage of pomegranate fruits. In: Postharvest Biotechnology of fruits, vol. 2, pp 65–67. CRC Press, Boca Raton, FL.Google Scholar
  116. Sandhya. (2010). Modified atmosphere packaging of fresh produce: current status and future needs. Food Science and Technology, 43, 381–392.Google Scholar
  117. Sanz, C., Pérez, A. G., Olías, R., & Olías, J. M. (1999). Quality of strawberries packed with perforated polypropylene. Journal of Food Science, 64(4), 748–752.CrossRefGoogle Scholar
  118. Saxena, A. K., Manan, J. K., & Berry, S. K. (1987). Pomegranates: post-harvest technology, chemistry and processing. Indian Food Packer, 41, 43–60.Google Scholar
  119. Seeram, N., Lee, R., Hardy, M., & Heber, D. (2005). Rapid large scale purification of ellagitannins from pomegranate husk, a by-product of the commercial juice industry. Separation and Purification Technology, 41, 49–55.CrossRefGoogle Scholar
  120. Selman, J. D. (1995). Time-temperature indicators. In M. L. Rooney (Ed.), Active food packaging (pp. 215–237). Glasgow: Blackie.Google Scholar
  121. Sepúlveda, E., Galletti, L., Sáenz, C., & Tapia, M. (2000). Minimal processing of pomegranate var. Wonderful. CIHEAM-Opitions Mediterraneennes, 42, 237–242.Google Scholar
  122. Simón, A., Gonzalez-Fandos, E., & Tobar, V. (2005). The sensory and microbiological quality of fresh sliced mushroom (Agaricus bisporus L.) packaged in modified atmospheres. International Journal of Food Science & Technology, 40(9), 943.CrossRefGoogle Scholar
  123. Singh, R. P. (2000). Scientific principles of shelf-life evaluation. In D. Man & A. Jones (Eds.), Shelf-life evaluation of food (pp. 3–22). Gaithersburg: Aspen Publishers.Google Scholar
  124. Singh, R. P., & Wells, J. H. (1985). Use of time-temperature indicators to monitor quality of frozen hamburger. Food Technology, 39(12), 42–50.Google Scholar
  125. Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging : a review. Trends in Food Science and Technology, 19, 634–643.Google Scholar
  126. Sivakumar, D., & Korsten, L. (2006). Influence of modified atmosphere packaging and post harvest treatments on quality retention of litchi cv. Mauritius. Postharvest Biology Technology, 41, 135–142.CrossRefGoogle Scholar
  127. Sivakumar, D., Arrebola, E., & Korsten, L. (2008). Postharvest decay control and quality retention in litchi (cv. McLean’s red) by combined application of modified atmosphere packaging and antimicrobial agents. Crop Protection, 27, 1208–1214.CrossRefGoogle Scholar
  128. Smiddy, M., Fitzgerald, M., Kerry, J. P., Papkovsky, D. B., O’Sullivan, C. K., & Guilbault, G. G. (2002). Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid oxidation. Meat Science, 61(3), 285–290.CrossRefGoogle Scholar
  129. Smolander, M., Alakomi, H.-L., Ritvanen, T., Vainionpaa, J., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions: time-temperature indicators as quality-indicating tools. Food Control, 15(3), 217–229.CrossRefGoogle Scholar
  130. Sneller, J. A. (1986). Smart films give big lift to controlled atmosphere packaging. Paper Film Converter, 12, 58–59.Google Scholar
  131. Soliva-Fortuny, RC., & Martín-Belloso, O. (2003). New advances in extending the shelf-life of fresh-cut fruits: a review. Trends in Food Science and Technology, 14, 341–353.Google Scholar
  132. Sonawane, C. S., Utikar, P. G., & Shinde, P. A. (1986). Postharvest fungal flora of pomegranate. Journal of the Agricultural University, Maharashtra, 11, 107–110.Google Scholar
  133. Summers, L. (1992). Intelligent packaging. London: Centre for Exploitation of Science and Technology.Google Scholar
  134. Sumner, M. D., Elliott-Eller, M., Weidner, G., Daubenmier, J. J., Chew, M. H., Marlin, R., et al. (2005). Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. The American Journal of Cardiology, 96, 810–814.CrossRefGoogle Scholar
  135. Tano, K., Oulé, M. K., Doyon, G., Lencki, R. W., & Arul, J. (2007). Comparative evaluation of the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. Postharvest Biology and Technology, 46, 212–221.CrossRefGoogle Scholar
  136. Taoukis, P. S., & Labuza, T. P. (2003). Time-temperature indicators (TTIs). In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 103–126). Cambridge: Woodhead Publishing Limited.CrossRefGoogle Scholar
  137. Taoukis, P. S., Fu, B., & Labuza, T. P. (1991). Time-temperature indicators. Food Technology, 45(10), 70–82.Google Scholar
  138. Techavises, N., & Hikida, Y. (2008). Development of mathematical model for simulating gas and water vapour exchanges in modified atmosphere packaging with macroscopic perforations. Journal of Food Engineering, 85, 94–104.CrossRefGoogle Scholar
  139. Tolle, W.E. (1962). Variables affecting film permeability requirements for modified-atmosphere storage of apples. USDA Technical Bulletins. pp. 1418–1429.Google Scholar
  140. Treglazova, N. V., & Fataliev, A. T. (1989). The effect of treatment with calcium chloride on pomegranate fruit storage. Sadovodstva i Vinogradarstvo, 9, 25–27.Google Scholar
  141. Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S., Kawakishi, S., et al. (1994). Antioxidative activity of the anthocyanin pigments cyanidin 3-O-β-d glucoside and cyanidin. Journal of Agricultural and Food Chemistry, 42, 2407–2410.CrossRefGoogle Scholar
  142. Varoquaux, P., Gouble, B., Barron, C., & Yildiz, F. (1999). Respiratory parameters and sugar catabolism of mushroom (Agaricus bisporus L.). Postharvest Biology and Technology, 16, 51–61.CrossRefGoogle Scholar
  143. Vyas, N. L., & Panwar, K. S. (1976). A new post-harvest disease of pomegranate in India. Current Science, 45, 76.Google Scholar
  144. Want, R. (2004). RFID: a key to automating everything. Scientific America, 290(1), 56–65.CrossRefGoogle Scholar
  145. Willcox, F. (1995). Evaluation of microbial and visual quality of minimally processed foods: a case study on the product life cycle of cut endive. Doctoral thesis. Catholic University of Leuven, Leuven, Belgium.Google Scholar
  146. Yahia, E. M. (2006). Modified and controlled atmosphere for tropical fruits. Stewart Postharvest Review, 5(6), 1–10.Google Scholar
  147. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: concept and applications. Journal of Food Science, 70(1), R1–R10.CrossRefGoogle Scholar
  148. Zarei, M., Azizi, M., & Bashiri-Sadr, Z. (2010). Studies on physic-chemical properties and bioactive compounds of six pomegranate cultivars grown in Iran. Journal of Food Technology, 8(3), 112–117.CrossRefGoogle Scholar
  149. Zeman, S., & Kubík, L’. (2007). Permeability of polymeric packaging materials. Technical Sciences, No. 10, 26–34.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Oluwafemi James Caleb
    • 1
  • Umezuruike Linus Opara
    • 1
    Email author
  • Corli R. Witthuhn
    • 1
  1. 1.University of StellenboschStellenboschSouth Africa

Personalised recommendations