Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 2, pp 474–484 | Cite as

Evaluation of Image Analysis Tools for Characterization of Sweet Bread Crumb Structure

  • Reynold R. Farrera-Rebollo
  • Ma. de la Paz Salgado-Cruz
  • Jorge Chanona-Pérez
  • Gustavo F. Gutiérrez-López
  • Liliana Alamilla-Beltrán
  • Georgina Calderón-Domínguez
Original Paper

Abstract

Many approaches to evaluate bread crumb features by applying free or at least not too expensive image analysis (IA) software have been published; however, the described procedures showed noticeable differences. The aim of this work was to compare different image scanning resolutions and thresholding techniques to quantify sweet bread crumb features (cell density, mean cell area, shape factor) and their relation with fractal dimension. Two sets of experiments were carried out, one to determine the effect of scanning resolution and thersholding method and the other to validate the previous results by evaluating breads with different crumb structures. Nine different scanning resolutions (75, 100, 150, 200, 300, 355, 435, 515, 555 dpi) and two segmentation procedures (Otsu and Manual) were tested. Three different types of commercial sweet breads and a yeasted sweet bread added with different concentrations (six, 12%) of Chia flour (Salvia hispanica) were evaluated. Results showed that the percentage of particles with areas between 0.1 and 4.0 mm2 remained almost constant when using 350 dpi or larger resolution values, while the smallest particles (<0.1 mm2) increased their proportion up to 87% at the highest scanning resolution for both thresholding methods. IA was useful to detect crumb structure differences among commercial breads and breads added with Chia flour as obtained from cell density (154 ± 4.6–246 ± 2.5) and mean cell area (0.81 ± 0.02–0.7 ± 0.03) results. However, the number of selected objects to calculate these parameters produced different results. The addition of 6% of Chia flour did not affect the bread crumb features, while at the largest proportion more and smaller pores were obtained. Fractal texture was useful to evaluate bread crumb structure, as it not depends on the number of particles detected.

Keywords

Image analysis Sweet bread Crumb structure Fractal dimension of texture 

References

  1. Baiano, A., Romaniello, R., Lamacchia, C., & La Notte, E. (2009). Physical and mechanical properties of bread loaves produced by incorporation of two types of toasted durum wheat flour. Journal of Food Engineering, 95, 199–207.CrossRefGoogle Scholar
  2. Barletta, B. J., & Barbosa, C. G. V. (1993). Fractal analysis to characterize ruggedness changes in tapped agglomerated food powders. Journal of Food Science, 58, 1030–1035.CrossRefGoogle Scholar
  3. Barret, A. H., & Peleg, M. (1995). Applications of fractal analysis to food structure. LWT Food Science and Technology, 28, 553–563.CrossRefGoogle Scholar
  4. Bushway, A. A., Belyea, P. R., & Bushway, R. J. (1981). Chia seed as a source of oil polysaccharide and protein. Journal of Food Science, 46, 1349–1350.CrossRefGoogle Scholar
  5. Calderón-Domínguez, G., Chanona-Pérez, J., Ramos-Cruz, A. L., López-Lara, A. I., Tlapale-Valdivia, A. D., & Gutiérrez-López, G. F. (2008). Fractal and image analysis of Mexican sweet bread bubble distribution; influence of fermentation and mixing time. In G. M. Campbell, M. Scanlon, L. Pyle, & K. Niranjan (Eds.), Bubbles in food 2: Novelty, health and luxury (pp. 73–81). St. Paul: American Association of Cereal Chemists.Google Scholar
  6. Chanona, P. J. J., Alamilla, B. L., Farrera, R. R. R., Quevedo, R., Aguilera, J. M., & Gutiérrez, L. G. F. (2003). Description of the convective air drying of a food model by means of the fractal theory. Food Science and Technology International, 9(3), 207–213.CrossRefGoogle Scholar
  7. Chevallier S, Zúñiga R & Le-Bail A (2010) Assessment of bread dough expansion during fermentation. Food Bioprocess Technology, doi: 10.1007/s11947-009-0319-3.
  8. Collar, C., Bollaín, C., & Angioloni, A. (2005). Significance of microbial transglutaminase on the sensory mechanical and crumb grain pattern of enzyme supplemented fresh pan breads. Journal of Food Engineering, 70, 479–488.CrossRefGoogle Scholar
  9. Crowley, P., Grau, H., & Arendt, E. K. (2000). Influence of additives and mixing time on crumb grain characteristics of wheat bread. Cereal Chemistry, 77(3), 370–375.CrossRefGoogle Scholar
  10. Datta, A. K., Sahin, S., Sumnu, G., & Keskin, S. O. (2007). Porous media characterization of breads baked using novel heating methods. Journal of Food Engineering, 79, 106–116.CrossRefGoogle Scholar
  11. Esteller, M. S., & Lannes, S. (2008). Production and characterization of sponge-dough bread using scalded rye. Journal of Texture Studies, 39, 56–67.CrossRefGoogle Scholar
  12. Esteller, M. S., Zancanaro, O., Jr., Santos-Palmeira, C. N., & Lannes, S. C. S. (2006). The effect of kefir addition on microstructure parameters and physical properties of porous white bread. European Food Research and Technology, 222, 26–31.CrossRefGoogle Scholar
  13. Gonzales-Barron, U., & Butler, F. (2006). A comparison of seven thresholding techniques with the k-means clustering algorithm for measurement of bread-crumb features by digital image analysis. Journal of Food Engineering, 74(2), 268–278.CrossRefGoogle Scholar
  14. Gonzales-Barron, U., & Butler, F. (2008a). Fractal texture analysis of bread crumb digital images. European Food Research and Technology, 226, 721–729.CrossRefGoogle Scholar
  15. Gonzales-Barron, U., & Butler, F. (2008b). Prediction of panellists’s perception of bread crumb appearance using fractal and visual textural features. European Food Research and Technology, 226, 779–785.CrossRefGoogle Scholar
  16. Gonzales-Barron, U., & Butler, F. (2008c). Crumb features quantification by cryo-scanning electron microscopy images. In G. M. Campbell, M. Scanlon, L. Pyle, & K. Niranjan (Eds.), Bubbles in food 2: Novelty, health and luxury (pp. 89–97). St. Paul: American Association of Cereal Chemists.Google Scholar
  17. Hatcher, D. W., Symons, S. J., & Manivannanet, U. (2004). Developments in the use of image analysis for the assessment of oriental noodle appearance and colour. Journal of Food Engineering, 61, 109–117.CrossRefGoogle Scholar
  18. Hernández, B., Cuevas, N. L., Shama-Levy, M. E. A., Ramírez, S. C. I., García, F. R., Rivera, J. A., et al. (2003). Factores asociados con sobrepeso y obesidad en niños mexicanos en edad escolar. Resultados de la encuesta urbana de alimentación y nutrición de la zona metropolitana de la Ciudad de México. Salud Pública Mëxico, 45(4), 558–564.Google Scholar
  19. Kerdpiboon, S., & Devahastin, S. (2007). Fractal characterization of some physical properties of a food product under various drying conditions. Drying Technology, 25(1), 135–146.CrossRefGoogle Scholar
  20. Kocer, D., Hicsasmaz, Z., Bayindirli, A., & Katnas, S. (2007). Bubble and pore formation of the high ratio cake formulation with polydextrose as a sugar and fat replacer. Journal of Food Engineering, 78, 953–964.CrossRefGoogle Scholar
  21. Lagrain, B., Boeckx, L., Wilderjans, E., Delcour, J. A., & Lauriks, W. (2006). Non-contact ultrasound characterization of bread crumb: application of the Biot-Allard model. Food Research International, 39, 1067–1075.CrossRefGoogle Scholar
  22. Lagrain, B., Leman, P., Goesaert, H., & Delcour, J. A. (2008). Impact of thermostable amylases during bread making on wheat bread crumb structure and texture. Food Research International, 41, 819–827.CrossRefGoogle Scholar
  23. Lassoued, N., Babin, P., Della Valle, G., Devaux, M. F., & Réguerre, A. L. (2007). Granulometry of bread crumb grain: considerations of 2D and 3D image analysis at different scale. Food Research International, 40, 1087–1097.CrossRefGoogle Scholar
  24. Lazaridou, A., & Biliaderis, C. G. (2007). Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. Journal of Cereal Science, 46, 101–118.CrossRefGoogle Scholar
  25. Lin, K. Y., Daniel, J. R., & Whistler, R. L. (1994). Structure of chia seed polysaccharide exudate. Carbohydrate Polymers, 23, 13–18.CrossRefGoogle Scholar
  26. López-Guel EC, Lozano-Bautista F, Mora-Escobedo R, Farrera-Rebollo RR, Chanona-Pérez J, Gutiérrez-López GF, Calderón-Domínguez G (2010) Effect of soybean 7 S protein fractions, obtained from germinated and nongerminated seeds, on dough rheological properties and bread quality. Food Bioprocess Technology, doi: 10.1007/s11947-009-0277-9.
  27. Pedreschi, F., Aguilera, J. M., & Brown, C. (2000). Characterization of food surfaces using scale-sensitive fractal analysis. Journal of Food Processing Engineering, 23, 127–143.CrossRefGoogle Scholar
  28. Peleg, M., & Normand, M. D. (1985). Characterization of the ruggedness of instant coffee particles by natural fractals. Journal of Food Science, 50(3), 829–831.CrossRefGoogle Scholar
  29. Pérez-Nieto, A., Chanona-Pérez, J. J., Farrera-Rebollo, R. R., Gutiérrez-López, G., Alamilla-Beltrán, L., & Calderón-Domínguez, G. (2010). Image analysis of structural changes in dough during baking. LWT Food Science and Technology, 43, 535–543.CrossRefGoogle Scholar
  30. Polaki, A., Xasapis, P., Fasseas, C., Yanniotis, S., & Mandala, I. (2010). Fiber and hydrocolloid content affect the microstructural and sensory characteristics of fresh and frozen stored bread. Journal of Food Engineering, 97, 1–7.CrossRefGoogle Scholar
  31. Pyler, E. J. (1988). Baking science and technology (pp. 740–775). Kansas: Sosland.Google Scholar
  32. Rahman, M. S. (1997). Physical meaning and interpretation of fractal dimensions of fine particles measured by different methods. Journal of Food Engineering, 32, 447–456.CrossRefGoogle Scholar
  33. Ribotta, P. D., Pérez, G. T., Añón, M. C., & León, A. E. (2010). Optimization of additive combination for improved soy-wheat bread quality. Food and Bioprocess Technology, 3, 395–405.CrossRefGoogle Scholar
  34. Riva, M., & Liviero, S. (2000). Image analysis approach to characterize the bread cooking kinetic. Industrie Alimentarie, 39(395), 593–660.Google Scholar
  35. Rogers, D. E., Day, D. D., & Olewnik, M. C. (1995). Development of an objective crumb grain measurements. Cereal Foods World, 40, 498–501.Google Scholar
  36. Rosales-Juárez, M., González-Mendoza, B., López-Guel, E. C., Lozano-Bautista, F., Chanona-Pérez, J. J., Gutiérrez-López, G., et al. (2008). Changes on dough rheological characteristics and bread quality as a result of the addition of germinated and non-germinated soybean flour. Food and Bioprocess Technology, 2(1), 152–160.CrossRefGoogle Scholar
  37. Rosell, M. C., & Santos, E. (2010). Impact of fibers on physical characteristics of fresh and staled bake of bread. Journal of Food Engineering, 98, 273–281.CrossRefGoogle Scholar
  38. Sapirstein, H. D., Roller, R., & Bushuk, W. (1994). Instrumental measurement of bread crumb grain by digital image analysis. Cereal Chemistry, 71(4), 383–391.Google Scholar
  39. Scanlon, M. G., & Aghal, M. C. (2001). Bread properties and crumb structure. Food Research International, 34, 841–864.CrossRefGoogle Scholar
  40. Skendi, A., Biliaderis, C. G., Papageorgiou, M., & Izydorcyk, M. S. (2010). Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chemistry, 119, 1159–1167.CrossRefGoogle Scholar
  41. Takano, H., Naito, S., Ishida, N., Koizumi, K., & Kano, H. (2002). Fermentation process and grain structure of baked breads from frozen doughs. Journal of Food Science, 67(2), 2725–2733.CrossRefGoogle Scholar
  42. Theiler, J. (1990). Estimating fractal dimension. Journal of the Optical Society of America A, 7(6), 1055–1073.CrossRefGoogle Scholar
  43. Tlapale-Valdivia, A. D., Chanona-Pérez, J. J., Mora-Escobedo, R., Farrera-Rebollo, R. R., Gutiérrez-López, G. F., & Calderón-Domínguez, G. (2010). Dough and crumb grain changes during mixing and fermentation and their relation with extension properties and bread quality of yeasted sweet dough. International Journal of Food Science & Technology, 45(3), 530–539.CrossRefGoogle Scholar
  44. Vázquez-Ovando, A., Rosado-Rubio, G., Chel-Guerrero, L., & Betancur-Ancona, D. (2009). Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT Food Science and Technology, 42(1), 168–173.CrossRefGoogle Scholar
  45. Wang, L., Miller, R. A., & Hoseney, R. C. (1998). Effects of (1–3)(1–4) β-D-glucans of wheat flour on breadmaking. Cereal Chemistry, 75, 629–633.CrossRefGoogle Scholar
  46. Wen-Shiung, C., Shang-Yuan, Y., & Chih-Ming, H. (2003). Two algorithms to estimate fractal dimension of gray-level images. Optical Engineering, 42(8), 2452–2464.CrossRefGoogle Scholar
  47. Zayas, I. Y. (1993). Digital image texture analysis for bread crumb grain evaluation. Cereal Foods World, 38(10), 760–766.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Reynold R. Farrera-Rebollo
    • 1
  • Ma. de la Paz Salgado-Cruz
    • 1
  • Jorge Chanona-Pérez
    • 1
  • Gustavo F. Gutiérrez-López
    • 1
  • Liliana Alamilla-Beltrán
    • 1
  • Georgina Calderón-Domínguez
    • 1
  1. 1.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxico D.F.México

Personalised recommendations