Food and Bioprocess Technology

, Volume 5, Issue 3, pp 912–920 | Cite as

Optimization of Supercritical Carbon Dioxide Extraction of Bioactive Flavonoid Compounds from Spearmint (Mentha spicata L.) Leaves by Using Response Surface Methodology

  • Mandana Bimakr
  • Russly Abdul Rahman
  • Ali Ganjloo
  • Farah Saleena Taip
  • Liza Md Salleh
  • Md Zaidul Islam Sarker
Original Paper


The bioactive flavonoid compounds of spearmint (Mentha spicata L.) leaves were obtained by using supercritical carbon dioxide (SC-CO2) extraction. Extraction was carried out according to face-centred central composite design, and independent variables were pressure (100, 200 and 300 bar), temperature (40, 50 and 60 °C) and co-solvent amount (3, 6 and 9 g/min). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive flavonoid compounds. The optimal conditions were identified as 209.39 bar pressure, 50.00 °C temperature and 7.39 g/min co-solvent amount. The obtained extract under optimum SC-CO2 condition was analysed by high-performance liquid chromatography. Seven bioactive flavonoids including catechin, epicatechin, rutin, luteolin, myricetin, apigenin and naringenin were identified as major compounds. The results of quantification showed that spearmint leaves are potential source of antioxidant compounds.


Spearmint (Mentha spicata L.) Supercritical carbon dioxide (SC-CO2) extraction Response surface methodology Bioactive flavonoid compounds HPLC 



The authors are grateful for the financial support received from the RMC, the Universiti Putra Malaysia, for this project.


  1. Ali, M. S., Saleem, M. A., Parvez, W. M., & Yamdagni, R. (2002). A chlorinated monoterpene ketone, acylated b-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry, 59, 889–895.CrossRefGoogle Scholar
  2. Bas, D., & Boyaci, I. H. (2007). Modeling and optimization. I. Usability of response surface methodology. Journal of Food Engineering, 78, 836–845.CrossRefGoogle Scholar
  3. Baysal, T., Ersus, S., & Starmans, D. A. J. (2000). Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. Journal of Agriculture and Food Chemistry, 48, 5507–5514.CrossRefGoogle Scholar
  4. Bimakr, M., Rahman, R. A., Taip, F., Chuan, L., Ganjloo, A., Salleh, L., et al. (2008). Supercritical carbon dioxide (SC-CO2) extraction of catechin, epicatechin, rutin and luteolin from spearmint (Mentha spicata L.) leaves. World Applied Sciences Journal, 5(4), 410–417.Google Scholar
  5. Choi, Y. H., Chin, Y. W., Kim, J., Jeon, S. H., & Yoo, K. P. (1999). Strategies for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers. Journal of Chromatography A, 863, 47–55.CrossRefGoogle Scholar
  6. Choudhury, P., Kumar, R., & Garg, A. N. (2006). Analysis of Indian mint (Mentha spicata) for essential, trace and toxic elements and its antioxidant behaviour. Journal of Pharmaceutical and Biomedical Analysis, 41, 825–832.CrossRefGoogle Scholar
  7. Daood, H. G., Illes, V., Gnayfeed, M. H., Meszaros, B., Horvath, G., & Biacs, P. A. (1999). Extraction of pungent spice paprika by supercritical carbon dioxide and subcritical propane. Journal of Supercritical Fluids, 23, 143–155.CrossRefGoogle Scholar
  8. Diaz-Maroto, M. C., Perez-Coello, M. S., & Cabezudo, M. D. (2002). Supercritical carbon dioxide extraction of volatiles from spices: comparison with simultaneous distillation extraction. Journal of Chromatography A, 947, 23–34.CrossRefGoogle Scholar
  9. Erkan, N., Ayranci, G., & Ayranci, E. (2008). Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, black seed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chemistry, 110, 76–82.CrossRefGoogle Scholar
  10. Gopalan, C., Ramasastri, B. V., Balasubramanian, S. C., Narsinagarao, B. S., & Deosthale, K. C. (1999). Nutritive value of Indian foods (pp. 156–165). Hyderabad (India): National Institute of Nutrition.Google Scholar
  11. Heim, K., Tagliaferro, A., & Bobilya, D. (2002). Flavonoid antioxidants: chemistry, metabolism and structure activity relationships. The Journal of Nutritional Biochemistry, 13, 572–584.CrossRefGoogle Scholar
  12. Hu, Q., Pan, B., Xu, J., Sheng, J., & Shi, Y. (2007). Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. Journal of Food Engineering, 80, 997–1001.CrossRefGoogle Scholar
  13. Kahkonen, M., Hopia, A., Vuorela, H., Rauha, J., Pihlaja, K., Kujala, T., et al. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47, 3954–3962.CrossRefGoogle Scholar
  14. Lang, Q., & Wai, C. M. (2001). Supercritical fluid extraction in herbal and natural product studies. Talanta, 53, 771–782.CrossRefGoogle Scholar
  15. Leal, P. F., Maia, N. B., Carmello, Q. A. C., Catherino, R. R., Eberlin, M. N., & Meireles, M. A. M. (2008). Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): Global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food and Bioprocess Technology, 1, 326–338.CrossRefGoogle Scholar
  16. Lin, M. C., Tsai, M. J., & Wen, K. C. (1999). Supercritical fluid extraction of flavonoids from Scutellariae Radix. Journal of Chromatography A, 830, 387–395.CrossRefGoogle Scholar
  17. Liu, B., & Zhu, Y. (2007). Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids. Journal of Food Engineering, 78, 584–587.CrossRefGoogle Scholar
  18. Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., & Deng, C. (2009). Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. Journal of Supercritical Fluids, 48, 9–14.CrossRefGoogle Scholar
  19. Liu, W., Fu, Y., Zu, Y., Tong, M., Wu, N., Liu, X., et al. (2009). Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chemistry, 114, 334–339.CrossRefGoogle Scholar
  20. Liyana-Pathirana, C., & Shahidi, F. (2005). Optimisation of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93, 47–56.CrossRefGoogle Scholar
  21. Liza, M. S., Abdul Rahman, R., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., et al. (2009). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88, 319–326.CrossRefGoogle Scholar
  22. Mitra, P., Ramaswamy, H., & Chang, K. (2009). Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering, 95, 208–213.CrossRefGoogle Scholar
  23. Nilufer, G., Kincala, S., & Yener, E. (2009). Optimization of supercritical carbon dioxide extraction of antioxidant from roasted wheat germ based on yield, total phenolic and tocopherol contents, and antioxidant activities of the extracts. Journal of Supercritical Fluids, 48, 217–224.CrossRefGoogle Scholar
  24. Paranjpe, P. (2001). Indian medicinal plants—forgotten healers (pp. 316–325). New Delhi: Chaukhambha Sanskrit Pratishtan.Google Scholar
  25. Pourmortazavi, S. M., & Hajimirsadeghi, S. S. (2007). Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1162, 2–24.CrossRefGoogle Scholar
  26. Reverchon, E. (1997). Supercritical fluid extraction and fractionation of essential oils and related products. Journal of Supercritical Fluids, 10, l–37.CrossRefGoogle Scholar
  27. Reverchon, E., & De Marco, I. (2006). Review: Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids, 38, 146–166.CrossRefGoogle Scholar
  28. Reverchon, E., Donsi, G., & Osseo, L. S. (1993). Modeling of supercritical fluid extraction from herbaceous matrices. Industrial and Engineering Chemistry Research, 32, 2721–2726.CrossRefGoogle Scholar
  29. Rezaei, K., & Temelli, F. (2000). Using supercritical fluid chromatography to determine the binary diffusion coefficient of lipids in supercritical CO2. Journal of Supercritical Fluids, 17, 35–44.CrossRefGoogle Scholar
  30. Roop, R. K., Akgerman, A., Dexter, B. J., & Irvin, T. R. (1989). Extraction of phenol from water with supercritical carbon dioxide. Journal of Supercritical Fluids, 2, 51–56.CrossRefGoogle Scholar
  31. Scavroni, J., Boaro, C., Marques, M. O. M., & Cesar Ferreira, L. (2005). Yield and composition of the essential oil of Mentha piperita L. (Lamiaceae) grown with biosolid. Brazilian Journal of Plant Physiology, 17, 345–352.CrossRefGoogle Scholar
  32. Sin, H. N., Yusof, S., Hamid, N., & Rahman, R. A. (2006). Optimisation of enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food Engineering, 73, 313–319.CrossRefGoogle Scholar
  33. Sweetie, R. K., Chander, R., & Sharma, A. (2007). Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chemistry, 100, 451–458.CrossRefGoogle Scholar
  34. Ueno, H., Tanaka, M., Machmudah, S., Sasaki, M., & Goto, M. (2008). Supercritical carbon dioxide extraction of valuable compounds from Citrus junos seed. Food and Bioprocess Technology, 1, 357–363.CrossRefGoogle Scholar
  35. Wang, H., & Helliwell, K. (2001). Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Research International, 34, 223–227.CrossRefGoogle Scholar
  36. Wang, H., Provan, G., & Helliwell, K. (2004). Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chemistry, 87, 307–311.CrossRefGoogle Scholar
  37. Wang, L., Yang, B., Du, X., & Yi, C. (2008). Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chemistry, 108, 737–741.CrossRefGoogle Scholar
  38. Wangensteen, H., Samuelsen, A. B., & Malterud, K. E. (2004). Antioxidant activity in extracts from coriander. Food Chemistry, 88, 293–297.CrossRefGoogle Scholar
  39. Wheeler, J. R., & McNally, E. (1989). Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Chromatographic Science, 27, 534–539.Google Scholar
  40. Zarena, A. S., Manohar, B., & Sankar. K. U. (2010). Optimization of supercritical carbon dioxide extraction of xanthones from mangosteen pericarp by response surface methodology. Food and Bioprocess Technology, doi: 10.1007/s11947-007-0032-z
  41. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49, 5165–5170.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Mandana Bimakr
    • 1
  • Russly Abdul Rahman
    • 1
    • 2
  • Ali Ganjloo
    • 1
  • Farah Saleena Taip
    • 2
  • Liza Md Salleh
    • 2
    • 4
  • Md Zaidul Islam Sarker
    • 3
  1. 1.Department of Food TechnologyFaculty of Food Science and Technology, Universiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Process and Food EngineeringFaculty of Engineering, Universiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Faculty of Chemical and Natural Resources EngineeringUniversiti TeknologiSkudaiMalaysia

Personalised recommendations