Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 5, pp 1756–1765 | Cite as

Bioactivity of Lemon Balm Kombucha

  • Dragana D. Četojević-SiminEmail author
  • Aleksandra S. Velićanski
  • Dragoljub D. Cvetković
  • Siniša L. Markov
  • Jasminka Ž. Mrđanović
  • Višnja V. Bogdanović
  • Slavica V. Šolajić
Original Paper

Abstract

There is inadequate published data referring to bioactivity of lemon balm tea and its Kombucha. The aim of this study, therefore, was to investigate antimicrobial, antiproliferative, genotoxic, and antigenotoxic potential of lemon balm tea and its Kombucha with consuming acidity. Antimicrobial activity was determined by agar-well diffusion method. Cell growth effects were determined in HeLa, MCF7, and HT-29 human tumor cell lines. Genotoxic and antigenotoxic effects were determined using chromosome aberration assay in Chinese hamster cell line CHO-K1. Differences between control and treated groups were evaluated using analysis of variance, at significance level of p < 0.05. Kombucha from lemon balm tea (Melissa officinalis L.) exibited antimicrobial activity against prokaryotic microorganisms independently of their cell wall structure (both Gram-positive and Gram-negative bacteria), while there was no observed activity against eukaryots (yeasts and moulds). There was absence of genotoxic effects while antigenotoxic effects of lemon balm Kombucha and tea were confirmed on MMC-damaged CHO-K1 cells. For the explanation of cell growth effects that were not concentration dependent, concept of hormesis was used. Antiproliferative activity was lower compared with traditional Kombucha and Satureja montana L. Kombucha, with lemon balm tea showing higher activity than its Kombucha.

Keywords

Antimicrobial activity Cell growth activity Chromosome aberration assay Kombucha Melissa officinalis L. Tea 

Abbreviations

ATCC

American type culture collection

CA

Chromosome aberration

CHO-K1

Chinese hamster ovary cell line

DET

Dye exclusion test

DMEM

Dulbecco’s modified Eagle’s medium

EDTA

Ethylenediaminetetraacetic acid

FCS

Fetal calf serum

HeLa

Human cervix cancer cell line

HT-29

Human colon cancer cell line

IC50

Concentration that inhibits cell growth by 50%

MCF7

Human breast cancer cell line

MMC

Mitomycin C

PBS

Phosphate buffer solution

RPMI-1640

Roswell Park Memorial Institute medium

SRB

Sulforhodamine B

TCA

Trichloroacetic acid, TRIS-tris(hydroxymethyl)aminomethane

Notes

Acknowledgements

Support by the Ministry of Science and Technology of Republic of Serbia (Project No. 23011) is greatly acknowledged.

References

  1. Blanc, P. J. (1996). Characterization of the tea fungus metabolites. Biotechnology Letters, 18, 139–142.CrossRefGoogle Scholar
  2. Calabrese, E. J. (2005). Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environmental Pollution, 138, 378–411.CrossRefGoogle Scholar
  3. Calabrese, E. J., & Baldwin, L. A. (2001a). The scientific foundation of hormesis. Critical Reviews in Toxicology, 31, 349–391.Google Scholar
  4. Calabrese, E. J., & Baldwin, L. A. (2001b). Agonist concentration gradients as a generalizable regulatory implementation strategy. Critical Reviews in Toxicology, 31, 471–474.CrossRefGoogle Scholar
  5. Canadanovic-Brunet, J., Cetkovic, G., Djilas, S., Tumbas, V., Bogdanovic, G., Mandic, A., et al. (2008). Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. Journal of Medicinal Food, 11(1), 133–143.CrossRefGoogle Scholar
  6. Cetojevic Simin, D. D., Bogdanovic, G. M., Cvetkovic, D. D., & Velicanski, A. S. (2008). Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha. Journal of Balkan Union of Oncology, 13(2), 395–401.Google Scholar
  7. Chu, S.-C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502–507.CrossRefGoogle Scholar
  8. Cvetkovic, D. (2008). Kombucha made from medical herbs—biological activity and fermentation parameters. Ph.D. thesis, Faculty of Technology, University of Novi Sad, Republic of Serbia.Google Scholar
  9. Cvetkovic, D., Markov, S., Djuric, M., Savic, D., & Velicanski, A. (2008). Specific interfacial area as a key variable in scaling-up Kombucha fermentation. Journal of Food Engineering, 85, 387–392.CrossRefGoogle Scholar
  10. Dastmalchi, K., Dorman, H. J. D., Oinonen, P. P., Darwis, Y., Laakso, I., & Hiltunen, R. (2008). Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. Lwt-food Science and Technology (Lebensmittel-Wissenschaft und Technologie), 41(3), 391–400.CrossRefGoogle Scholar
  11. Ertürk, O. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61(3), 275–278.CrossRefGoogle Scholar
  12. Freshney, R. I. (2005). Culure of animal cells: A manual of basic technique (5th ed., pp. 335–358). New York: Wiley.CrossRefGoogle Scholar
  13. Greenwalt, C. J., Ledford, R. A., & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. Lwt-food Science and Technology (Lebensmittel-Wissenschaft und Technologie), 31, 291–296.CrossRefGoogle Scholar
  14. Greenwalt, C. J., Steinkraus, K. H., & Ledford, R. A. (2000). Kombucha, the fermented tea: microbiology, composition, and claimed health effects. Journal of Food Protection, 63, 976–981.Google Scholar
  15. Hoffmann, N. (1998). Basic Building Blocks, Nutrients and Growth Factors, What the Kombucha culture needs to survive. Available at: www.kombu.de/nutrient.htm. Accessed 20 January 2009.
  16. Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of Nutrition, 134, 3479–3485.Google Scholar
  17. Liu, C. H., Hsu, W. H., Lee, F. L., & Liao, C. C. (1996). The isolation and identification of microbes from fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13, 407–415.CrossRefGoogle Scholar
  18. López, V., Martín, S., Gómez-Serranillos, M. P., Carretero, M. E., Jäger, A. K., & Calvo, M. I. (2009). Neuroprotective and neurological properties of Melissa officinalis. Neurochemical Research, 34(11), 1955–1956.CrossRefGoogle Scholar
  19. Lorge, E., Thybaud, V. A., Oliver, J. M., Wakata, A., Lorenzon, G., & Marzin, D. (2006). SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 607(1), 13–36.CrossRefGoogle Scholar
  20. Ludovico, P., Sansonetty, F., Silva, M. T., & Corte-Real, M. (2003). Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. Federation of European Microbiological Societies Yeast Research, 3, 91–96.Google Scholar
  21. Malbasa, R. V., Milanovic, S. D., Loncar, E. S., Djuric, M. S., Caric, M. D., Ilicic, M. D., et al. (2009). Milk-based beverages obtained by Kombucha application. Food Chemistry, 112, 178–184.CrossRefGoogle Scholar
  22. Markov, S. L., Malbaša, R. V., Hauk, M. J., & Cvetković, D. D. (2001). Investigation of tea fungus microbe associations I The Yeasts. Acta Periodica Technologica, 32, 133–138.Google Scholar
  23. Mayo, W. J. (1998). Chemical methods of control: Antimicrobial drugs. In T. R. Johnson & C. L. Case (Eds.), Laboratory experiments in microbiology (5th ed., pp. 179–181). San Francisco: The Benjamin/Cummings Publishing Company.Google Scholar
  24. Mayser, P., Fromme, S., Leitzmann, C., & Gründer, K. (1995). The yeast spectrum of tea fungus kombucha. Mycoses, 38(7–8), 289–295.CrossRefGoogle Scholar
  25. Mimica-Dukic, N., Bozin, B., Sokovic, M., & Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52, 2485–2489.CrossRefGoogle Scholar
  26. Mrdjanovic, J., Bogdanovic, G., Cvetkovic, D., Velicanski, A., & Cetojevic-Simin, D. (2007). The frequency of sister chromatide exchange and micronuclei in evaluation of cytogenetic activity of Kombucha on human peripheral blood lymphocytes. Archive of Oncology, 15(3–4), 85–88.CrossRefGoogle Scholar
  27. Office Internationale de la vinge et du vin (OIV) (1990). Recuiel des methodes internationales d' analyse des vins et des monts. Paris. pp. 155–159.Google Scholar
  28. Pereira, P., Tysca, D., Oliveira, P., da Silva Brum, L. F., Picada, J. N., & Ardenghi, P. (2005). Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacological Research, 52(3), 199–203.CrossRefGoogle Scholar
  29. Pritsos, C. A., & Sartorelli, C. A. (1986). Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Research, 46, 3528–3532.Google Scholar
  30. Roussin, M. R. (1996). Analyses of Kombucha ferments: report on growers, Information Resources. LC, Salt Lake City, Utah. Available at: www.kombucha-research.com. Accessed 11 February 2010
  31. Savage, J. R. K. (1975). Classification and relationships of induced chromosomal structural changes. Journal of Medical Genetics, 12, 103–122.Google Scholar
  32. Sievers, M., Lanini, C., Weber, A., & Schuler-Schmid, U. (1995). Microbiology and fermentation balance in a Kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology, 18, 590–594.CrossRefGoogle Scholar
  33. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82, 1107–1112.CrossRefGoogle Scholar
  34. Snustad, D. P., & Simmons, M. J. (2001). Fundamentos de Genética. Rio de Janeiro: Guanabara Koogan.Google Scholar
  35. Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48, 2589–2594.CrossRefGoogle Scholar
  36. Sreeramulu, G., Zhu, Y., & Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49–56.CrossRefGoogle Scholar
  37. Stangler Herodez, S., Hadolin, M., Skerget, M., & Knez, Z. (2003). Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chemistry, 80, 275–282.CrossRefGoogle Scholar
  38. Steinkraus, K. H., Shapiro, K. B., Hotchkiss, J. H., & Mortlock, R. P. (1996). Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnologica, 16(2–3), 199–205.CrossRefGoogle Scholar
  39. Teoh, A. L., Heard, G., & Cox, J. (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology, 95, 119–126.CrossRefGoogle Scholar
  40. Velicanski, A. (2008). Characteristics of Kombucha fermentation on medicinal herbs from Lamiaceae family. MS Thesis. Faculty of Technology, University of Novi Sad, Republic of SerbiaGoogle Scholar
  41. Verma, R. S., & Babu, A. (1995). Human chromosomes, principles and techniques (2nd ed.). New York: McGraw-Hill Inc, Health Professions Division.Google Scholar
  42. Yang, J., & Liu, R. H. (2009). Synergistic effect of apple extracts and quercetin 3-ß-d-glucoside combination of antiproliferative activity in MCF-7 human breast cancer cells in vitro. Journal of Agricultural and Food Chemistry, 57, 8581–8586.CrossRefGoogle Scholar
  43. Yogesh, B., Kain, A. K., Pauline, T., Anju, B., Sairam, M., Singh, B., et al. (2003). Lead induced oxidative stress: beneficial effects of Kombucha tea. Biomedical and Envirolmental Sciences, 16(3), 276–282.Google Scholar
  44. Yoshida, T., Kondo, T., Ogawa, R., Feril, L. B., Zhao, Q. L., Watanabe, A., et al. (2008). Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemotherapy and Pharmacology, 61(4), 559–567.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Dragana D. Četojević-Simin
    • 1
    Email author
  • Aleksandra S. Velićanski
    • 2
  • Dragoljub D. Cvetković
    • 2
  • Siniša L. Markov
    • 2
  • Jasminka Ž. Mrđanović
    • 1
  • Višnja V. Bogdanović
    • 1
  • Slavica V. Šolajić
    • 1
  1. 1.Oncology Institute of VojvodinaSremska KamenicaSerbia
  2. 2.Faculty of TechnologyUniversity of Novi SadNovi SadSerbia

Personalised recommendations