Food and Bioprocess Technology

, Volume 5, Issue 2, pp 808–815 | Cite as

Physicochemical and Nutritional Characteristics of Organic Acid-Treated Button Mushrooms (Agaricus bisporous)



An effort was made to evaluate the effectiveness of organic acids to improve the quality and shelf life of button mushroom (Agaricus bisporous). Shelf life of malic acid-treated mushrooms was improved to a significant level (p < 0.05) in terms of increased whiteness and texture. Sensorial properties, chemical components, and dietary fibers of treated mushrooms remained unaltered. Antioxidant levels of treated mushrooms to scavenge free radical of 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), polyphenolics content, flavonoids content, and superoxide dismutase activity were not affected. For determining the effectiveness of malic acid as a sanitizer, mushroom slices were artificially inoculated with five foodborne pathogens. Of the pathogens tested, Escherichia coli O15:H7 and Cronobacter sakazakii were inactivated to the maximum; Salmonella typhimurium, Listeria monocytogenes, and Campylobacter jejuni were also reduced significantly (p < 0.05) following storage for up to 5 days at 15°C with 2% and 4% of malic acid. Negligible growth was observed upon storage of treated mushrooms at 4°C. The results of our study suggested malic acid treatment as an economical minimal processing strategy for edible mushrooms.


Agaricus bisporous Malic acid Antioxidant activities Sanitizer Inactivation 


  1. AOAC (1990) Official methods of analysis of AOAC Intl. 13th ed. Method 930.04, 930.05, 979.09 and 957.13. Association of Official Analytical Chemists, Washington DC, USA.Google Scholar
  2. Avila-Sosa, R., Gastelum-Franco, M. G., Camacho-Davila, A., Torres-Munoz, J. V., & Nevarez-Moorillon, G. V. (2010). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food and Bioprocess Technology, 3(3), 434–440.CrossRefGoogle Scholar
  3. Beuchat, L. R., Nail, B. V., Adler, B. B., & Clavero, M. R. S. (1998). Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. Journal of Food Protection, 61(10), 1305–1311.Google Scholar
  4. Booth, I. R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiological Reviews, 49(4), 359–378.Google Scholar
  5. Cheng, H. H., Hou, W. C., & Lu, M. L. (2002). Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis bark edible mushroom in rats fed a high-cholesterol diet with or without Nebacitin. Journal of Agricultural and Food Chemistry, 50(25), 7438–7443.CrossRefGoogle Scholar
  6. Cheung, L. M., Cheung, P. C. K., & Ooi, V. E. C. (2003). Antioxidant activity and total polyphenolics of edible mushroom extracts. Food Chemistry, 81(2), 249–255.CrossRefGoogle Scholar
  7. Doyle, M. P., & Schoeni, J. L. (1986). Isolation of Campylobacter jejuni from retail mushrooms. Applied and Environmental Microbiology, 51(2), 449–450.Google Scholar
  8. Ganguli, A., Ghosh, M., & Singh, N. (2007). Antioxidant activities and total phenolics of pickles produced from the edible mushroom, Agaricus bisporous. Journal of Culinary Science and Technology, 5(2–3), 51–57.Google Scholar
  9. Grube, B. J., Eng, E. T., Kao, Y. C., Kwan, A., & Chen, S. (2001). White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. The Journal of Nutrition, 131, 3288–3293.Google Scholar
  10. Jin, T. Y., Oh, D. H., Rhee, C. O., Chung, D. O., & Eun, J. B. (2006). Change of physicochemical characteristics and functional components in the cereals of saengsik, uncooked food by washing with electrolyzed water. Korean Journal of Food Science and Technology, 38(4), 506–512.Google Scholar
  11. Kim, S. M., Cho, Y. S., & Sung, S. K. (2001). The antioxidant ability and nitrite scavenging ability of plant extracts. Korean Journal of Food Science and Technolology, 33(5), 626–632.Google Scholar
  12. Li, Y., Brackett, R. E., Chen, J., & Beuchat, L. R. (2001). Survival and growth of Escherichia coli O157:H7 inoculated onto cut lettuce before or after heating in chlorinated water, followed by storage at 5°C or 15°C. Journal of Food Protection, 64(3), 305–309.Google Scholar
  13. Liao, C. H., & Sapers, G. M. (2000). Attachment and growth of Salmonella Chester on apple fruits and in vivo response of attached bacteria to sanitizer treatments. Journal of Food Protection, 63(7), 876–883.Google Scholar
  14. Mattila, P., Konko, K., Eurola, M., Pihlava, J. M., Astola, J., & Vahteristo, L. (2001). Contents of vitamins, mineral elements, and some polyphenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry, 49(5), 2343–2348.CrossRefGoogle Scholar
  15. Prosky, L., Asp, N., Schweizer, T., Devries, J., & Fruda, I. (1998). Determination of insoluble, soluble and total dietary fibre in foods products, interlaboratory study. Journal—Association of Official Analytical Chemists, 71(5), 1071–1025.Google Scholar
  16. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237.CrossRefGoogle Scholar
  17. Rekha, M. N., Yadav, A. R., Shylaja, D., Chauhan, A. S., & Ramteke, R. S. (2010). Evaluation of antioxidant properties of dry soup mix extracts containing dill (Anethum sowa L.) leaf. Food and Bioprocess Technology, 3(3), 441–449.CrossRefGoogle Scholar
  18. Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. (2007). A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67(4), 721–731.Google Scholar
  19. Samadpour, M., Barbour, M. W., Nguyen, T., Cao, T. M., Buck, F., Depavia, G. A., et al. (2006). Incidence of enterohemorrhagic Escherichia coli, Escherichia coli O157, Salmonella, and Listeria monocytogenes in retail fresh ground beef, sprouts, and mushrooms. Journal of Food Protection, 69(2), 441–443.Google Scholar
  20. Sapers, G. M., Miller, R. M., & Mattrazzo, A. M. (1999). Effectiveness of sanitizing agents in inactivating Escherichia coli in golden delicious apples. Journal of Food Science, 64(4), 734–737.CrossRefGoogle Scholar
  21. Sholberg, P. L., & Gaunce, A. P. (1995). Fumigation of fruit with acetic acid to prevent postharvest decay. Horticultural Sciences, 30(6), 1271–1275.Google Scholar
  22. Sia, G. M., & Candish, J. K. (1999). Effects of shiitake (Lentinus edodes) extract on human neutrophils and the U937 monocytic cell line. Phytotherapy Research, 13(2), 133–137.CrossRefGoogle Scholar
  23. Tanaka, M., Kuei, C. W., Nagashima, Y., & Taguchi, T. (1998). Application of antioxidative maillrad reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaoshi, 54, 1409–1414.CrossRefGoogle Scholar
  24. Turkoglu A., Duru, M.E., Mercan, M. (2007). Antioxidant and antimicrobial activity of Russula delica Fr: An edible wild mushroom. Eurasian Journal of Analytical Chemistry, 2. ISSN 1306-357.Google Scholar
  25. Van, N.-P., Perales, I., Van de, M.-A., Curtis, G. D. W., & Mossel, D. A. A. (1989). Liquid and solid selective differential media for the detection and enumeration of Listeria monocytogenes and other Listeria spp. International Journal of Food Microbiology, 8(4), 299–316.CrossRefGoogle Scholar
  26. Van, N. C. J., Decuypere, J. A., Dierick, N., & Molly, K. (2003). The influence of Lentinus edodes (shiitake mushroom) preparations on bacteriological and morphological aspects of the small intestine in piglets. Archives of Animal Nutrition, 57(6), 399–412.CrossRefGoogle Scholar
  27. Warriner, K., Spaniolas, S., Dickinson, M., Wright, C., & Waites, W. M. (2003). Internalization of bioluminescent Echerichia coli and Salmonella Montevideo in growing bean sprouts. Journal of Applied Microbiology, 95(4), 719–727.CrossRefGoogle Scholar
  28. Wisniewsky, M. A., Glatz, B. A., Gleason, M. L., & Reitmeier, C. A. (2000). Reduction of Escherichia coli O157:H7 counts on whole fresh apples by treatment with sanitizers. Journal of Food Protection, 63(6), 703–708.Google Scholar
  29. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia

Personalised recommendations