Food and Bioprocess Technology

, Volume 5, Issue 3, pp 999–1009 | Cite as

Osmotic Dehydration Kinetics of Pomegranate Seeds Using Date Juice as an Immersion Solution Base

  • Brahim BchirEmail author
  • Souhail Besbes
  • Romdhane Karoui
  • Michel Paquot
  • Hamadi Attia
  • Christophe Blecker
Original Paper


Pomegranate seeds were osmodehydrated using date juice added with sucrose (final °Brix, 55) as immersion solution. The kinetics of osmotic dehydration showed that the most significant changes of mass transfer took place during the first 20 min of the process, regardless of date juice varieties. During this time, seed water loss and solid gain were estimated to be ∼39% and ∼6%, respectively. After 20 min of the process, the percentage of water loss and solid gain varied slightly and ranged on average close to ∼40% and ∼9%, respectively. During osmotic dehydration, there was a leaching of natural solutes from seeds into the solution, which is quantitatively not negligible, and might have an important impact on the sensorial and nutritional value of seeds and date juices. Both scanning electron microscopy and texture (compression) analysis revealed that osmotic dehydration process induced modifications of seed texture and cell structure. Sucrose was found to be the essential element which influences the texture of seed and the viscosity of date juice. Additionally, natural sugar present in date juice permits substituting 35% of the total quantity of sucrose added to the osmotic solution.


Pomegranate Date juice Osmotic dehydration Texture analysis Scanning electron microscopy 



This research was supported by Gembloux Agro-Bio Tech, University of Liege (Belgium), and National Engineering School of Sfax (Tunisia).


  1. Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food and product structure. Trends in Food Science and Technology, 14, 432–437.CrossRefGoogle Scholar
  2. Albagnac, P. G., Varoquaux, J., & Montigaud, C. I. (2002). Technologies de transformation des fruits. Ed. Tec & Doc, cop.-XXII, Paris/Londres/New York, p. 498.Google Scholar
  3. Al-Farsi, M. (2003). Clarification of date juice. International Journal of Food Science and Technology, 38, 241–245.CrossRefGoogle Scholar
  4. Allali, H., Marchal, L., & Vorobiev, E. (2010). Blanching of strawberries by ohmic heating: Effects on the kinetics of mass transfer during osmotic dehydration. Food Bioprocess Technology, 3, 406–414. doi: 10.1007/s11947-008-0115-5.CrossRefGoogle Scholar
  5. Al-Maiman, S. A., & Ahmad, D. (2002). Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chemistry, 76, 437–441.CrossRefGoogle Scholar
  6. Al-Said, F. A., Opara, L. U., & Al-Yahyai, R. A. (2009). Physico-chemical and textural quality attributes of pomegranate cultivars Brown in the Sultanate of Oman. Journal of Food Engineering, 90, 129–134.CrossRefGoogle Scholar
  7. AOAC. (1990). In K. Helrich (Ed.), Official methods of analysis of the association of official analytical chemists (15th ed.). Arlington: Association of Official Analytical Chemists, Inc.Google Scholar
  8. Attia, H., Bennasar, M., Lagaude, A., Hugodo, B., Rouviere, J., & Tarodo, B. (1993). Ultrafiltration with microfiltration membrane of acid skimmed and fat-enriched milk coagula: hydrodynamic, microscope and rheological approaches. Journal of Dairy Research, 60, 161–174.CrossRefGoogle Scholar
  9. Aylin, A., & Medeni, M. (2005). Rheological behavior of pomegranate (Punica granatum L.) juice and concentrate. Journal of Texture Studies, 36, 68–77.CrossRefGoogle Scholar
  10. Azuara, E., Flores, E., & Beristain, C. (2009). Water diffusion and concentration profiles during osmodehydration and storage of apple tissue. Food and Bioprocess Technology, 4, 361–367.CrossRefGoogle Scholar
  11. Barminas, J. T., James, M. K., & Abubakar, U. M. (1999). Chemical composition of seeds and oil of Xylopia aethiopica grown in Nigeria. Plant Foods for Human Nutrition, 53, 193–198.CrossRefGoogle Scholar
  12. Barreveld, W. H. (1993). Date palm products. FAO Agricultural Services Bulletin No. 101.Google Scholar
  13. Bchir, B., Besbes, S., Attia, H., & Blecker, C. (2009). Osmotic dehydration of pomegranate seeds: Mass transfer kinetics and DSC characterization. International Journal of Food Science and Technology, 44, 2208–2217.CrossRefGoogle Scholar
  14. Bchir, B., Besbes, S., Attia, H., & Blecker, C. (2010). Osmotic dehydration of pomegranate seeds (Punica granatum L.): Effect of freezing pre-treatment. Journal of Food Process Engineering. doi: 10.1111/j.1745-4530.2010.00591.x.
  15. Besbes, S., Hentati, B., Blecker, C., Deroanne, C., Lognay, G., Drira, N. E., et al. (2005a). Voies de valorisation des sous produits de dattes: Valorisation du noyau. Hygiène Microbiologie Alimentaire, 49, 1–9.Google Scholar
  16. Besbes, S., Cheikh Rouhou, S., Blecker, C., Deroanne, C., Lognay, G., Drira, N. E., et al. (2005b). Voies de valorisation des sous produits de dattes: Valorisation de la pulpe. Microbiologie Hygiène Alimentaire, 18, 3–11.Google Scholar
  17. Besbes, S., Drira, L., Blecker, C., Deroanne, C., & Attia, H. (2009). Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam. Journal of Food Chemistry, 112, 406–411.CrossRefGoogle Scholar
  18. Bouabidi, H., Reyens, M., & Roussi, M. (1996). Critères de caractérisation des fruits de quelques cultivars de palmier dattiers (Phoenix dactylifera L.) du sud tunisien. Annales de L’INRAT, 69, 73–86.Google Scholar
  19. Chenlo, F., Moreira, R., Herrero, F., & Vazquer, G. (2007). Osmotic dehydration of chestnut with sucrose: Mass transfer processes and global kinetics modelling. Journal of Food Engineering, 78, 765–774.CrossRefGoogle Scholar
  20. Corrêa, J., Pereira, L., Vieira, G., & Hubinger, M. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96, 498–504.CrossRefGoogle Scholar
  21. Delgado, A. E., & Rubiolo, A. C. (2005). Microstructural changes in strawberry after freezing and thawing processes. Lebensmittel-Wissenchaft und-Technologie, 38, 135–142.CrossRefGoogle Scholar
  22. Devic, E., Guyot, S., Daudin, J., & Bonazzi, C. (2010). Kinetics of polyphenol losses during soaking and drying of cider apples. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0361-1.
  23. Espiard, E. (2002). Introduction à la transformation industrielle des fruits. TEC and DOC-Lavoisier, Paris, France, pp. 181–182.Google Scholar
  24. Fabiano, A. N., Oliveira, F., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1, 339–345.CrossRefGoogle Scholar
  25. Fadavi, A., Barzegar, M., Azizi, H., & Bayat, M. (2005). Physicochemical composition of ten pomegranate cultivars (Punica granatum L.) grown in Iran. Journal of Food Science Technology, 11, 113–119.Google Scholar
  26. Falade, K., Igbeka, J., & Ayanwuyi, F. (2007). Kinetics of mass transfer and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985.CrossRefGoogle Scholar
  27. Fathi, M., Mohebbi, B., & Razavi, S. (2010). Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0222-y.
  28. Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006). Optimisation of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77, 188–193.CrossRefGoogle Scholar
  29. Garcia, P., Mognetti, C., André-Bello, A., & Martinez-Monzo, J. (2010). Osmotic dehydration of aloe vera (Aloea barbadensis Miller). Journal of Food Engineering, 97, 154–160.CrossRefGoogle Scholar
  30. Grigelmo-Miguel, N., & Martin-Belloso, O. (1999). Characterization of dietary fiber from orange juice extraction. Food Research International, 31, 355–361.CrossRefGoogle Scholar
  31. Kingsly, A. R. P., Singh, D. B., Manikantan, M. R., & Manikantan, R. K. (2006). Moisture dependent physical properties of dried pomegranate seeds (Anardana). Journal of Food Engineering, 75, 492–496.CrossRefGoogle Scholar
  32. Kowalska, H., & Lenart, A. (2001). Mass exchange during osmotic pre-treatment of vegetables. Journal of Food Engineering, 49, 137–140.CrossRefGoogle Scholar
  33. Kowalska, H., Lenart, A., & Leszczyk, D. (2008). The effect of blanching and freezing on osmotic dehydration of pumpkin. Journal of Food Engineering, 86, 30–38.CrossRefGoogle Scholar
  34. Mascheroni, R., & Spiazzi, E. (1997). Mass transfer model for osmotic dehydration of fruits and vegetables—I. Development of the simulation model. Journal of Food Engineering, 34, 387–410.CrossRefGoogle Scholar
  35. Masmoudi, M., Besbes, S., Blecker, C., & Attia, H. (2007). Preparation and characterization of osmotidehydrated fruits from lemon and date by-products. Journal of Food Science and Technology International, 13, 405–412.CrossRefGoogle Scholar
  36. Mavroudis, N. E., Gekas, V., & Sjohlm, I. (1998). Osmotic dehydration of apples, shrinkage phenomena and the significance of initial structure on mass tranfer rates. Journal of Food Engineering, 38, 101–123.CrossRefGoogle Scholar
  37. Maity, T., Raju, P., & Bawa, A. (2010). Effect of freezing on textural kinetics in snacks during frying. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0236-5.
  38. Monsalve-Gonzalez, A., Barbosa-Canovas, G. V., Cavalieri, R. P., McEvily, A. J., & Iyengar, R. (1994). Inhibition of enzymatic browning in apple products by 4-hexylresorcinol. Food Technology, 49, 110–118.Google Scholar
  39. Mujumdar, A., & Law, C. (2010). Drying technology: Trends and applications in postharvest processing. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0353-1.
  40. Munier, P. (1973). Le palmier dattier (pp. 141–221). Paris: Maison neuve et Larose.Google Scholar
  41. Nisha, P., Singhal, R., & Pandit, A. (2010). Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food and Bioprocess Technology. doi: 10.1007/s11947-009-0300-1.
  42. Nunes, C., Santos, C., Pinto, G., Lopes-da-silva, J. A., Saraiva, J. A., & Coimbra, M. A. (2008). Effect of candying on microstructure and texture of plums (Prunus domestica L.). LWT-Food Science and Technology, 41, 1776–1783.CrossRefGoogle Scholar
  43. Poyrazoglu, E., Gokmen, V., & Artik, N. (2002). Organic acids phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. Journal of Food Composition and Analysis, 15, 567–575.Google Scholar
  44. Raoult-Wack, A. L., Guilbert, S., Le Maguer, M., & Rios, G. (1991). Simultaneous water and solute transport in shrinking media—Part 1: Application to dewatering and impregnation soaking process analysis (osmotic dehydration). Drying Technnology, 9, 589–612.CrossRefGoogle Scholar
  45. Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration methods to enhance mass transfer. Trends in Food Science and Technology, 13, 48–59.CrossRefGoogle Scholar
  46. Ruiz-Lopez, I., Castillo-Zamudio, R., Salgado-Cervantes, M. A., Rodriguez-Jimenes, G. C., & Garcia-Alvarado, M. A. (2010). Mass transfer modelling during osmotic dehydration of hexahedral pineapple silices in limited volume solutions. Food and Bioprocess Technology, 3, 427–433.CrossRefGoogle Scholar
  47. Sajeev, M. S., Manikantan, M. R., Kingsly, A. R. P., Moorthy, S. N., & Sreekumar, J. (2004). Texture analysis of taro (Colocasia esculenta L. Schott) cormels during storage and cooking. Journal of Food Science, 69, 315–321.CrossRefGoogle Scholar
  48. Saurel, R., Raoult-Wack, A. L., Rios, G., & Guilbert, S. (1994). Mass transfer phenomena during osmotic dehydration of apple II. Frozen plant tissue. International Journal of Food Science and Technology, 29, 543–550.Google Scholar
  49. Shi, J., Pan, Z., McHugh, T., & Hirschberg, E. (2009). Effect of infusion method and parameters on solids gain in blueberries. Food and Bioprocess Technology, 3, 271–278.CrossRefGoogle Scholar
  50. Torreggiani, D., & Bertolo, G. (2001). Osmotic pre-treatments in fruit processing: Chemical, physical and structural effects. Journal of Food Engineering, 49, 247–253.CrossRefGoogle Scholar
  51. Uribe, E., Miranda, M., Vega-Galvez, A., Quispe, I., Claveria, R., & Di Scala, K. (2010). Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas): Influence of temperature on diffusion coefficients and kinetic parameters. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0336-2.
  52. Yousif, A. K., & Al-Ghamdi, A. S. (1999). Suitability of some date cultivars for jelly making. Journal of Food Science and Technology, 36, 515–518.Google Scholar
  53. Yousif, A. K., Abou Ali, M., & Abou-Idreese, A. (1990). Processing evaluation and storability of date jelly. Journal of Food Science and Technology, 27, 264–267.Google Scholar
  54. Yunfeng, L., Changjiang, G., Jijun, Y., Jingyu, W., Jing, X., & Shuang, C. (2006). Evaluation of antioxidant properties of pomegranate peel extract incomparison with pomegranate pulp extract. Journal of Food Chemistry, 96, 254–260.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Brahim Bchir
    • 1
    Email author
  • Souhail Besbes
    • 2
  • Romdhane Karoui
    • 1
  • Michel Paquot
    • 3
  • Hamadi Attia
    • 2
  • Christophe Blecker
    • 1
  1. 1.Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium
  2. 2.Laboratory of Food Analyses, National Engineering School of SfaxSfaxTunisia
  3. 3.Department of Industrial Biological Chemistry, Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium

Personalised recommendations