Food and Bioprocess Technology

, Volume 5, Issue 5, pp 1592–1600

Preliminary Characterization of Novel Extra-cellular Lipase from Penicillium crustosum Under Solid-State Fermentation and its Potential Application for Triglycerides Hydrolysis

  • Elisandra Rigo
  • Jorge Luiz Ninow
  • Siu Mui Tsai
  • Ademir Durrer
  • Lillian Liva Foltran
  • Daniela Remonatto
  • Melânia Sychoski
  • Renata Vardanega
  • Débora de Oliveira
  • Helen Treichel
  • Marco Di Luccio
Original Paper

Abstract

Current studies about lipase production involve the use of agro-industrial residues and newly isolated microorganisms aimed at increasing economic attractiveness of the process. Based on these aspects, the main objective of this work is to perform the partial characterization of enzymatic extracts produced by a newly isolated Penicillium crustosum in solid-state fermentation. Lipase extract presented optimal temperature and pH of 37 °C and 9–10, respectively. The concentrated enzymatic extract showed more stability at 25 °C and pH 7. The enzymes kept 100% of their enzymatic activity until 60 days of storage at 4 and −10 °C. The stability under calcium salts indicated that the hydrolytic activity presented decay with the increase of calcium concentration. The specificity under several substrates indicated good enzyme activities in triglycerides from C4 to C18.

Keywords

Penicillium crustosum Lipases Solid-state fermentation Hydrolysis Partial characterization 

References

  1. Azeredo, L. A. I., Gomes, P. M., Sant’Anna, G., Jr., Castilho, L. R., & Freire, D. M. G. (2007). Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Current Microbiology, 54, 361–365.CrossRefGoogle Scholar
  2. Altschu, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. L. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.Google Scholar
  3. Benjamin, S., & Pandey, A. (2000). Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 44, 213–221.CrossRefGoogle Scholar
  4. Burkert, J. F. M. (2002). Otimização das Condições de Produção da Lipase por Geotrichum candidum NRRL-Y552. Ph.D. Thesis. Departamento de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, Brazil (in Portuguese.)Google Scholar
  5. Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum candidum using factorial design. Bioresource Technology, 91, 77–84.CrossRefGoogle Scholar
  6. Bradoo, S., Rathi, P., Saxena, R. K., & Gupta, R. (2002). Microwave-assisted rapid characterization of lipase selectivities. Journal of Biochemistry, 51, 115–120.Google Scholar
  7. Casa, R. M., Sinisterra, J. V., & Sanchez-Montero, J. M. (2006). Characterization and catalytic properties of a new crude lipase from C. rugosa. Enzyme and Microbial Technology, 38, 599–609.CrossRefGoogle Scholar
  8. Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Oliart Ros, R. (2005). Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 37, 648–654.CrossRefGoogle Scholar
  9. Cavalcanti, E. A. C., Gutarra, M. L. E., Freire, D. M. G., Castilho, L. R., & Sant’Anna, G. L. (2005). Lipase production by solid-state fermentation in fixed-bed bioreactors. Brazilian Archives of Biology and Technology, 48, 79–84.CrossRefGoogle Scholar
  10. Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World Journal of Microbiology & Biotechnology, 22, 881–885.CrossRefGoogle Scholar
  11. Diaz, J. C., Rodriguez, J. A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., et al. (2006). Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme and Microbial Technology, 39, 1042–1050.CrossRefGoogle Scholar
  12. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  13. Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis. B, Enzymatic, 62, 197–212.CrossRefGoogle Scholar
  14. Freire, D. M. G., Gomes, P. M., Bom, E. P. S., & Sant’Anna, G. L., Jr. (1997). Lipase production by a new promising strain Penicillium restrictum. Revista de Microbiologia, 28, 6–12.Google Scholar
  15. Garlapati, V. K., Vundavilli, P. R., & Banerjee, R. (2010). Evaluation of lipase production by genetic algorithm and particle swarm optimization and their comparative study. Applied Biochemistry and Biotechnology, 162, 1350–1361. doi:10.1007/s12010-009-8895-2.CrossRefGoogle Scholar
  16. Godoy, M. G., Gutarra, M. L. E., Maciel, F. M., Felix, S. P., Bevilaqua, J. B., Machado, O. L. T., et al. (2009). Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzyme and Microbial Technology, 44, 317–322.CrossRefGoogle Scholar
  17. Gombert, A. K., Pinto, A. L., Castilho, L. R., & Freire, D. M. G. (1999). Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochemistry, 35, 85–90.CrossRefGoogle Scholar
  18. Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396–403.CrossRefGoogle Scholar
  19. Jensen, R. G. (1983). Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids, 18, 650–657.CrossRefGoogle Scholar
  20. Karadzic, I., Masui, A., Zivkovic, L. I., & Fujiwara, N. (2006). Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. Journal of Bioscience and Bioengineering, 102, 82–89.CrossRefGoogle Scholar
  21. Kanwar, S. S., Ghazi, I. A., Chimni, S. S., Joshi, G. K., Rao, G. V., Kaushal, R. K., et al. (2006). Purification and properties of a novel extra-cellular thermotolerant metallolipase of Bacillus coagulans MTCC-6375 isolate. Protein Expression and Purification, 46, 421–428.CrossRefGoogle Scholar
  22. Kempka, A. P., Lipke, N. L., Pinheiro, T. L. F., Menoncin, S., Treichel, H., Freire, D. M. G., et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystem Engineering, 31, 119–125.CrossRefGoogle Scholar
  23. Kiran, G. S., Shanmughapriya, S., Jayalakshmi, J., Selvin, J., Gandhimathi, R., Sivaramakrishnan, S., et al. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystem. Engineering, 31, 483–492.Google Scholar
  24. Kim, J.-T., Kang, S. G., Woo, J.-H., Lee, J.-H., Jeong, B. C., & Kim, S.-J. (2007). Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Applied Microbiology and Biotechnology, 74, 820–828.CrossRefGoogle Scholar
  25. Kojima, Y., & Shimizu, S. (2003). Purification and characterization of the lipase from Pseudomonas fluorescens HU 380. Journal of Bioscience and Bioengineering, 96, 219–226.Google Scholar
  26. Labuschagne, R. B., Van Tonder, A., & Litthauer, D. (1997). Flavobacterium odoratum lipase: isolation and characterization. Enzyme and Microbial Technology, 21, 52–58.CrossRefGoogle Scholar
  27. Kumari, A., Mahapatra, P., Garlapati, V. K., Banerjee, R., & Dasgupta, S. (2009a). Lipase mediated isoamyl acetate synthesis in solvent-free system using vinyl acetate as acyl donor. Food Technology and Biotechnology, 47, 13–18.Google Scholar
  28. Kumari, A., Mahapatra, P., Garlapati, V. K., & Banerjee, R. (2009b). Enzymatic transesterification of Jatropha oil. Biotechnology for Biofuels, 2, 1.CrossRefGoogle Scholar
  29. Lerin, L. A., Richetti, A., Dallago, R., Treichel, H., Mazutti, M. A., Oliveira, J. V. et al. (2010). Enzymatic synthesis of ascorbyl palmitate in organic solvents: Process optimization and kinetic evaluation. Food and Bioprocess Technology (in press). doi: 10.1007/s11947-010-0398-1.
  30. Liu, Z., Chi, Z., Wang, L., & Li, J. (2008). Production, purification and characterization of an extracellular lipase from Aureobasidium pullolans HN2.3 with potential application for the hydrolysis of edible oils. Biochemical Engineering Journal, 40, 445–451.CrossRefGoogle Scholar
  31. Lima, V. M. G., Krieger, N., Mitchell, D. A., & Fontana, J. D. (2004). Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal, 18, 65–71.CrossRefGoogle Scholar
  32. Mahapatra, P., Kumari, A., Kumar, G. V., Banerjee, R., & Nag, A. (2009). Kinetics of solvent-free geranyl acetate synthesis by Rhizopus oligosporus NRRL 5905 lipase immobilized on to cross-linked silica. Biocatalysis and Biotransformation, 27, 124–130.CrossRefGoogle Scholar
  33. Martins, V. G., Kalil, S. J., & Costa, J. V. (2008). Co-produção de lipase e biossurfactante em estado sólido para utilização em biorremediação de óleos vegetais e hidrocarbonetos. Quimica Nova, 31, 1942–1947.CrossRefGoogle Scholar
  34. Mala, J. G. S., Edwinoliver, N. G., Kamini, N. R., & Puvanakrishnan, R. (2007). Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. Journal of Genetic and Applied Microbiology, 53, 247–253.CrossRefGoogle Scholar
  35. Menoncin, S., Domíngues, N. M., Freire, D. M. G., Toniazzo, G., Cansian, R. L., Oliveira, J. V., et al. (2008). Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food and Bioprocess Technology, 3, 537–544.CrossRefGoogle Scholar
  36. Moayedallaie, S., Mirzaei, M., & Paterson, J. (2010). Bread improvers: Comparison of a range of lipases with a traditional emulsifier. Food Chemistry, 122, 495–499.CrossRefGoogle Scholar
  37. Nawani, N., & Kaur, J. (2007). Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: Production, purification and biochemical characterization. Enzyme and Microbial Technology, 40, 881–887.CrossRefGoogle Scholar
  38. Palma, M. B., Pinto, A. L., Gombert, A. K., Seitz, K. H., Kivatinitz, S. C., Castilho, L. R., et al. (2000). Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Applied Biochemistry and Biotechnology, 84–86, 1137–1145.CrossRefGoogle Scholar
  39. Prazeres, J. N., Cruz, J. A. B., & Pastore, G. M. (2006). Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Brazilian Journal of Microbiology, 37, 505–509.CrossRefGoogle Scholar
  40. Razak, C. N. A., Salleh, A. B., Musani, R., Samad, M. Y., & Basri, M. (1997). Some characteristics of lipases from thermophilic fungi isolated from palm oil effluent. Journal of Molecular Catalysis. B, Enzymatic, 3, 153–159.CrossRefGoogle Scholar
  41. Richetti, A., Leite, S. G. F., Antunes, O. A. C., Lerin, L. A., Dallago, R. M., Emmerich, D., et al. (2010). Assessment of process variables on 2-ethylhexyl palmitate production using Novozym 435 as catalyst in a solvent-free system. Bioprocess and Biosystems Engineering, 3, 331–337.CrossRefGoogle Scholar
  42. Rigo, E., Ninow, J. L., Polloni, A. E., Remonatto, D., Arbter, F., Vardanega, R., et al. (2009). Improved lipase biosynthesis by a newly isolated Penicillium sp. grown on agricultural wastes. Industrial Biotechnology, 5, 119–126.CrossRefGoogle Scholar
  43. Rigo, E., Ninow, J. L., Di Luccio, M., Oliveira, J. V., Polloni, A. E., Remonatto, D., et al. (2010). Lipase production by solid fermentation of soybean meal with different supplements. LWT Food Science and Technology, 43, 1132–1137.CrossRefGoogle Scholar
  44. Saxena, R. K., Sheoran, A., Bhoopander, G., & Davidson, S. (2003a). Purification strategies for microbial lipases. Journal of Microbiology Methods, 52, 1–18.CrossRefGoogle Scholar
  45. Saxena, R. K., Davidson, W. S., Sheoran, A., & Giri, B. (2003b). Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochemistry, 39, 239–247.CrossRefGoogle Scholar
  46. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.Google Scholar
  47. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.CrossRefGoogle Scholar
  48. Snellman, E. A., Sullivan, E. R., & Colwell, R. R. (2002). Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. Biochemical Engineering Journal, 11, 269–274.Google Scholar
  49. Stearling, D. (2003). DNA extraction from fungi, yeast and bacteria. New York: Humana Press.Google Scholar
  50. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  51. Vardanega, R., Remonatto, D., Arbter, F., Polloni, A. E., Rigo, E., Ninow, J. L., et al. (2009). A systematic study on extraction of lipase obtained by solid-state fermentation of soybean meal by a newly isolated strain of Penicillium sp. Food and Bioprocess Technology, 3, 461–465.CrossRefGoogle Scholar
  52. Vargas, G. D., Treichel, H., Oliveira, D., Beneti, S. C., Freire, D. M. G., & Di Luccio, M. (2008). Optimization of lipase production by Penicillium simplicissimum in soybean meal. Journal of Chemical Technology and Biotechnology, 83, 47–54.CrossRefGoogle Scholar
  53. Wang, S. L., Lin, Y. T., Liang, T. W., Chio, S. H., Ming, L. J., & Wu, P. C. (2009). Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as substrate. Journal of Industrial Microbiology & Biotechnology, 36, 65–73.CrossRefGoogle Scholar
  54. White, T. J., Bruns, T., Lee, E., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. San Diego: Academic.Google Scholar
  55. Wolski, E., Menusi, E., Remonatto, D., Vardanega, R., Arbter, F., Rigo, E., et al. (2009). Partial characterization of lipases produced by a newly isolated Penicillium sp. in solid state and submerged fermentation: A comparative study. LWT Food Science and Technology, 42, 1557–1560.CrossRefGoogle Scholar
  56. Zeman, L. J., & Zydney, A. L. (1996). Microfiltration and ultrafiltration. Principles and applications. New York: Marcel Dekker Inc.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Elisandra Rigo
    • 1
    • 2
  • Jorge Luiz Ninow
    • 1
  • Siu Mui Tsai
    • 3
  • Ademir Durrer
    • 3
  • Lillian Liva Foltran
    • 3
  • Daniela Remonatto
    • 2
  • Melânia Sychoski
    • 2
  • Renata Vardanega
    • 2
  • Débora de Oliveira
    • 2
  • Helen Treichel
    • 2
  • Marco Di Luccio
    • 2
  1. 1.Departamento de Engenharia Química e de AlimentosUniversidade Federal de Santa Catarina, UFSCFlorianópolisBrazil
  2. 2.Programa de Pós-Graduação em Engenharia de AlimentosUniversidade Regional Integrada do Alto Uruguai e das MissõesErechimBrazil
  3. 3.Laboratório de Biologia Celular e MolecularCENA-Universidade de São Paulo, USPPiracicabaBrazil

Personalised recommendations