Food and Bioprocess Technology

, Volume 4, Issue 6, pp 1066–1088 | Cite as

Native and Biotechnologically Engineered Plant Proteases with Industrial Applications

Original Paper

Abstract

Proteases occupy the most relevant position among industrial enzymes. Plant proteases have been used in medicine, detergent manufacturing, and food science for many years, but their production is diminishing in favor of those of microbial origin because lower production costs. Papain, bromelain, and ficin are the most frequently employed plant proteases, although new proteases with new and more appealing physicochemical properties for industry are still emerging. DNA technology and genetic engineering shall play, without a doubt, an important role for the production of these proteases at the industrial level. The present review focuses on the applications of traditional plant proteases as well as new proteases discovered during the last 20 years, some of which have already been genetically engineered either to increase production or to strengthen some of their physicochemical properties. The review also refers to the protease classification, action pattern, and main characteristics.

Keywords

Plant proteases Industrial enzymes Protein engineering Genetic engineering Applications 

References

  1. Aehle, W. (2004). Industrial enzymes: Enzymes in food applications. In W. Aehle (Ed.), Enzymes in industry: Production and applications. Chichester: Wiley.Google Scholar
  2. Antao, C. M., & Malcata, F. X. (2005). Plant serine proteases: biochemical, physiological and molecular features. Plant Physiology and Biochemistry, 43(7), 637–650.Google Scholar
  3. Arima, K., Uchikoba, T., Yonezawa, H., Shimada, M., & Kaneda, M. (2000). Cucumisin-like protease from the latex of Euphorbia supina. Phytochemistry, 53(6), 639–644.Google Scholar
  4. Asakura, T., Watanabe, H., Abe, K., & Arai, S. (1995). Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination has a gene organization distinct from those of animal and microbial aspartic proteinases. European Journal of Biochemistry, 232(1), 77–83.Google Scholar
  5. Asakura, T., Watanabe, H., Abe, K., & Arai, S. (1997). Oryzasin as an aspartic proteinase occurring in rice seeds: purification, characterization, and application to milk clotting. Journal of Agricultural and Food Chemistry, 45(4), 1070–1075.Google Scholar
  6. Asif-Ullah, M., Kim, K. S., & Yu, Y. G. (2006). Purification and characterization of a serine protease from Cucumis trigonus Roxburghi. Phytochemistry, 67(9), 870–875.Google Scholar
  7. Aspmo, S. I., Horn, S. J., & Eijsink, V. G. H. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40(5), 1957–1966.Google Scholar
  8. Azarkan, M., El Moussaoui, A., Van Wuytswinkel, D., Dehon, G., & Looze, Y. (2003). Fractionation and purification of the enzymes stored in the latex of Carica papaya. Journal of Chromatography. B: Analytical Technologies in the Biomedical and Life Sciences, 790(1–2), 229–238.Google Scholar
  9. Baines, B. S., & Brocklehurst, K. (1979). A necessery modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for structural integrity of the enzyme produced by traditional methods. The Biochemical Journal, 177(2), 541–548.Google Scholar
  10. Barbas, C. F., & Wong, C. H. (1987). Papain catalysed peptide synthesis: Control of amidase activity and the introduction of unusual amino acids. Journal of the Chemical Society, 1987, 533–534.Google Scholar
  11. Barrett, A. J. (1994). Classification of Peptidases. Methods in Enzymology, 244, 1–15.Google Scholar
  12. Beers, E. P., Jones, A. M., & Dickerman, A. W. (2004). The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry, 65(1), 43–58.Google Scholar
  13. Behnke, J. M., Buttle, D. J., Stepek, G., Lowe, A., & Duce, I. R. (2008). Developing novel anthelmintics from plant cysteine proteinases. Parasites & Vectors, 1(1), 29.Google Scholar
  14. Belozersky, M. A., Sarbakanova, S. T., & Dunaevsky, Y. E. (1989). Aspartic proteinase from wheat seeds—isolation, properties and action on gliadin. Planta, 177(3), 321–326.Google Scholar
  15. Berger, D., & Altmann, T. (2000). A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes & Development, 14(9), 1119–1131.Google Scholar
  16. Berger, J., & Asenjo, C. F. (1940). Anthelmintic activity of crystalline papain. Science, 91(2364), 387–388.Google Scholar
  17. Beuth, J. (2008). Proteolytic enzyme therapy in evidence-based complementary oncology: fact or fiction? Integrative Cancer Therapies, 7(4), 311–316.Google Scholar
  18. Boguslawski, S. J., Ledden, D. J., & Fredrickson, R. A. (1989). Improved procedure for preparation of F(ab’)2 fragments of mouse IgGs by papain digestion. Journal of Immunological Methods, 120(1), 51–56.Google Scholar
  19. Brien, S., Lewith, G., Walker, A., Hicks, S. M., & Middleton, D. (2004). Bromelain as a treatment for osteoarthritis: a review of clinical studies. Evidence-Based Complementary Alternative Medicine, 1(3), 251–257.Google Scholar
  20. Burton, S. G., Cowan, D. A., & Moodley, J. M. (2002). The search for the ideal biocatalyst. Nature Biotechnology, 20(1), 37–45.Google Scholar
  21. Buttle, D. J., Kembhavi, A. A., Sharp, S. L., Shute, R. E., Rich, D. H., & Barrett, A. J. (1989). Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex. The Biochemical Journal, 261(2), 469–476.Google Scholar
  22. Cáceres Arriba, P. & Fernández, J.I. (2000) Proceso de obtención de extractos en polvo de un coagulante de leche procedente de las flores del cardo Cynara sp. Patente Espanhola ES 2 139 550 A1Google Scholar
  23. Campos, R., Guerra, R., Aguilar, M., Ventura, O., & Camacho, L. (1990). Chemical characterization of proteases extracted from wild thistle (Cynara cardunculus). Food Chemistry, 35(2), 89–97.Google Scholar
  24. Carter, C. E., Marriage, H., & Goodenough, P. W. (2000). Mutagenesis and kinetic studies of a plant cysteine proteinase with an unusual arrangement of acidic amino acids in and around the active site. Biochemistry, 39(36), 11005–11013.Google Scholar
  25. Castanheira, P., Samyn, B., Sergeant, K., Clemente, J. C., Dunn, B. M., Pires, E., et al. (2005). Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. The Journal of Biological Chemistry, 280(13), 13047–13054.Google Scholar
  26. CFR(Code of Federal Regulations). (1999). Bacterially-derived protease enzyme preparation (No.21, Section 1150). Washington,DC: CFR.Google Scholar
  27. CFR(Code of Federal Regulations). (2009). Use of food ingredients and sources of ratiation (No.21, Section 21). Washington,DC: CFR.Google Scholar
  28. Chen, F., & Foolad, M. R. (1997). Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Molecular Biology, 35(6), 821–831.Google Scholar
  29. Chen, Y.-X., Zhang, X.-Z., Zheng, K., Chen, S.-M., Wang, Q.-C., & Wu, X.-X. (1998). Protease-catalyzed synthesis of precursor dipeptides of RGD with reverse micelles. Enzyme and Microbial Technology, 23(3–4), 243–248.Google Scholar
  30. Cherry, J. R., & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 14(4), 438–443.Google Scholar
  31. Chitpinitoyl, S., & Crabbe, M. J. C. (1998). Chymosin and aspartic proteinases. Food Chemistry, 61, 395–418.Google Scholar
  32. Choudhury, D., Biswas, S., Roy, S., & Dattagupta, J. K. (2010). Improving thermostability of papain through structure-based protein engineering. Protein Engineering, Design & Selection, 23(6), 457–467.Google Scholar
  33. Choudhury, D., Roy, S., Chakrabarti, C., Biswas, S. & Dattagupta, J,K, (2009). Production and recovery of recombinant propapain with high yield, 70(4), 465–72.Google Scholar
  34. Coffeen, W. C., & Wolpert, T. J. (2004). Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. The Plant Cell, 16(4), 857–873.Google Scholar
  35. Cohen, L. W., Coghlan, V. M., & Dihel, L. C. (1986). Cloning and sequencing of papain-encoding cDNA. Gene, 48(2–3), 219–227.Google Scholar
  36. Cohen, L. W., Fluharty, C., & Dihel, L. C. (1990). Synthesis of papain in Escherichia coli. Gene, 88(2), 263–267.Google Scholar
  37. Cooreman, W. (1978). In R. Ruyssen & A. Lauwers (Eds.), VIII. Bromelain. In: Pharmaceutical enzymes properties and assay methods (pp. 107–121). Belgium: E. Story-Scientia Scientific Publishing Co. Gent.Google Scholar
  38. Cordeiro, M. C., Xue, Z. T., Pietrzak, M., Pais, M. S., & Brodelius, P. E. (1994). Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin. Plant Molecular Biology, 24(5), 733–741.Google Scholar
  39. D’Hondt, K., Stack, S., Gutteridge, S., Vandekerckhove, J., Krebbers, E., & Gal, S. (1997). Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus. Plant Molecular Biology, 33(1), 187–192.Google Scholar
  40. De Clerck, J. (1969). The use of proteolytic enzymes for the stabilization of beer. Technology Q Master Brew Association American, 6, 136–140.Google Scholar
  41. Devakate, R. V., Patil, V. V., Waje, S. S., & Thorat, B. N. (2009). Purification and drying of bromelain. Separation and Purification Technology, 64(3), 259–264.Google Scholar
  42. Devaraj, K. B., Kumar, P. R., & Prakash, V. (2008). Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. Journal of Agricultural and Food Chemistry, 56(23), 11417–11423.Google Scholar
  43. Díaz, O., Fernandéz, M., Gracia de Fernando, C. D., de la Hoz, L., & Ordóñez, J. A. (1996). Effect of the addition of papain on the dry fermented sausage proteolysis. Journal of the Science of Food and Agriculture, 71(1), 13–21.Google Scholar
  44. Distefano, S., Palma, J. M., McCarthy, I., & Del Rio, L. A. (1999). Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta, 209(3), 308–313.Google Scholar
  45. Domingos, A., Cardoso, P. C., Xue, Z., Clemente, A., Brodelius, P. E., & Pais, M. S. (2000). Purification, cloning and autoproteolytic processing of an aspartic proteinase from Centaurea calcitrapa. European Journal of Biochemistry, 267(23), 6824–6831.Google Scholar
  46. Drenth, J., Jansonius, J. N., Koekoek, R., Swen, H. M., & Wolthers, B. G. (1968). Structure of papain. Nature, 218, 929–932.Google Scholar
  47. Driska, S. P., Laudadio, R. E., Wolfson, M. R., & Shaffer, T. H. (1999). A method for isolating adult and neonatal airway smooth muscle cells and measuring shortening velocity. Journal of Applied Physiology, 86(1), 427–435.Google Scholar
  48. Dubey, V. K., Pande, M., Singh, B. K., & Jagannadham, M. V. (2007). Papain-like proteases: applications of their inhibitors. African Journal of Biotechnology, 6(9), 1077–1086.Google Scholar
  49. Dubois, T., Kleinschmidt, T., Schnek, A. G., Looze, Y., & Braunitzer, G. (1988). The thiol proteinases from the latex of Carica papaya L. II. The primary structure of proteinase omega. Biological Chemistry Hoppe-Seyler, 369(8), 741–754.Google Scholar
  50. Dufour, E., Storer, A. C., & Ménard, R. (1995). Engineering nitrile hydratase activity into a cysteine protease by a single mutation. Biochemistry, 34(50), 16382–16388.Google Scholar
  51. Dufour, E., Tam, W., Nägler, D. K., Storer, A. C., & Ménard, R. (1998). Synthesis of amidrazones using an engineered papain nitrile hydratase. FEBS Letters, 433(1–2), 78–82.Google Scholar
  52. Dunn, B. M. (2001). (2001) Determination of protease mechanism. In R. Beynon & J. S. Bond (Eds.), Plant proteolytic enzymes—a practical approach (pp. 77–79). New York: Oxford University Press.Google Scholar
  53. Egas, C., Lavoura, N., Resende, R., Brito, R. M. M., Pires, E., Pedroso de Lima, M. C., et al. (2000). The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage. The Journal of Biological Chemistry, 275(49), 38190–38196.Google Scholar
  54. Faro, C., Ramalho-Santos, M., Vieira, M., Mendes, A., Simões, I., Andrade, R., et al. (1999). Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. The Journal of Biological Chemistry, 274(40), 28724–28729.Google Scholar
  55. Faro, C., Verissimo, P., Lin, Y., Tang, J., & Pires, E. (1995). Cardosin A and B, aspartic proteases from the flowers of cardoon. Advances in Experimental Medicine and Biology, 362, 373–377.Google Scholar
  56. Fernández-Salguero, J., Prados, F., Calixto, F., Vioque, M., Sampaio, P., & Tejada, L. (2003). Use of recombinant cyprosin in the manufacture of ewe’s milk cheese. Journal of Agricultural and Food Chemistry, 51(25), 7426–7430.Google Scholar
  57. Fonseca, K. C., Morais, N. C., Queiroz, M. R., Silva, M. C., Gomes, M. S., Costa, J. O., et al. (2010). Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry, 71(7), 708–715.Google Scholar
  58. Frazão, C., Bento, I., Costa, J., Soares, C. M., Veríssimo, P., Faro, C., et al. (1999). Crystal structure of cardosin A, a glycosylated and Arg-Gly-Asp containing aspartic proteinase from the flowers of Cynara cardunculus L. The Journal of Biological Chemistry, 274(39), 27694–27701.Google Scholar
  59. Galan, E., Prados, F., Pino, A., Tejada, L., & Fernandez-Salguero, J. (2008). Influence of different amounts of vegetable coagulant from cardoon Cynara cardunculus and calf rennet on the proteolysis and sensory characteristics of cheeses made with sheep milk. International Dairy Journal, 18(1), 93–98.Google Scholar
  60. Garg, G. K., & Virupaks, T. K. (1970). Acid protease from germinated Sorghum. 1. Purification and characterization of enzyme. European Journal of Biochemistry, 17(1), 4–12.Google Scholar
  61. Gildberg, A. (1994). Enzymic processing of marine raw materials. Process Biochemistry, 28(1), 1–15.Google Scholar
  62. Gilmartin, L., & Jervis, L. (2002). Production of cod (Gadus morhua) muscle hydrolysates. Influence of combinations of commercial enzyme preparations on hydrolysate peptide size range. Journal of Agricultural and Food Chemistry, 50(19), 5417–5423.Google Scholar
  63. Glathe, S., Kervinen, J., Nimtz, M., Li, G. H., Tobin, G. J., & Copeland, T. D. (1998). Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.). The Journal of Biological Chemistry, 273(47), 31230–31236.Google Scholar
  64. Grudkowska, M., & Zagdańska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51(3), 609–624.Google Scholar
  65. Guevara, M. G., Almeida, C., Mendieta, J. R., Faro, C. J., Veríssimo, P., Pires, E. V., et al. (2005). Molecular cloning of a potato leaf cDNA encoding an aspartic protease (StAsp) and its expression after P. infestans infection. Plant Physiology and Biochemistry, 43(9), 882–889.Google Scholar
  66. Guevara, M. G., Daleo, G. R., & Oliva, C. R. (2001). Purification and characterization of an aspartic protease from potato leaves. Physiologia Plantarum, 112(3), 321–326.Google Scholar
  67. Guevara, M. G., Oliva, C. R., Huarte, M., & Daleo, G. R. (2002). An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. European Journal of Plant Pathology, 108(2), 131–137.Google Scholar
  68. Guilloteau, M., Laloi, M., Michaux, S., Bucheli, P., & McCarthy, J. (2005). Identification and characterization of the major aspartic proteinase activity in Theobroma cacao seeds. Journal of the Science of Food and Agriculture, 85(4), 549–562.Google Scholar
  69. Gupta, P., Maqbool, T., & Saleemuddin, M. (2007). Oriented immobilization of stem bromelain via the lone histidine on a metal affinity support. Journal of Molecular Catalysis. B, Enzymatic, 45(3–4), 78–83.Google Scholar
  70. Gutiérrez-González, L. H., Rojo-Domínguez, A., Cabrera-González, N. E., Pérez-Montfort, R., & Padilla-Zúñiga, A. J. (2006). Loosely packed papain prosegment displays inhibitory activity. Archives of Biochemistry and Biophysics, 446(2), 151–160.Google Scholar
  71. Hale, M. B. (1969). Relative activities of commercially available enzymes in the hydrolysis of fish proteins. Food Technology, 23, 107–110.Google Scholar
  72. Hammond, J. A., Fielding, D., & Bishop, S. C. (1997). Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications, 21(3), 213–228.Google Scholar
  73. Hamsher, J.F. & Tate, G.B.E. (1973) Chemically modified proteolytic enzymes. United States Patent N° 3.770.587.Google Scholar
  74. Harrach, T., Eckert, K., Maurer, H. R., Machleidt, I., Machleidt, W., & Nuck, R. (1998). Isolation and characterization of two forms of an acidic bromelain stem proteinase. Journal of Protein Chemistry, 17(4), 351–361.Google Scholar
  75. Harrach, T., Eckert, K., Schulze-Forster, K., Nuck, R., Grunow, D., & Maurer, H. R. (1995). Isolation and partial characterization of basic proteinases from stem bromelain. Journal of Protein Chemistry, 14(1), 41–52.Google Scholar
  76. Hartley, B. S. (1960). Proteolytic enzymes. Annual Review of Biochemistry, 29, 45–72.Google Scholar
  77. Heimgartner, U., Pietrzak, M., Geertsen, R., Brodelius, P., Figueiredo, A. C. D., & Pais, M. S. S. (1990). Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus. Phytochemistry, 29(5), 1405–1410.Google Scholar
  78. Homaei, A. A., Sajedi, R. H., Sariri, R., Seyfzadeh, S., & Stevanato, R. (2010). Cysteine enhances activity and stability of immobilized papain. Amino Acids, 38(3), 937–942.Google Scholar
  79. Hordegen, P., Cabaret, J., Hertzberg, H., Langhans, W., & Maurer, V. (2006). In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay. Journal of Ethnopharmacology, 108(1), 85–89.Google Scholar
  80. Hordegen, P., Hertzberg, H., Heilmann, J., Langhans, W., & Maurer, V. (2003). The anthelmintic efficacy of five plant products against gastrointestinal trichostrongylids in artificially infected lambs. Veterinary Parasitology, 117(1–2), 51–60.Google Scholar
  81. Horn, S. J., Aspmo, S. I., & Eijsink, V. G. H. (2005). Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. Journal of Applied Microbiology, 99(5), 1082–1089.Google Scholar
  82. Hoyle, N., & Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76–79.Google Scholar
  83. Huang, D.-J., Chen, H.-J., Hou, W.-C., Chen, T.-E., Hsu, W.-Y., & Lin, Y.-H. (2005). Expression and function of a cysteine proteinase cDNA from sweet potato (Ipomoea batatas [L.] Lam ’Tainong 57′) storage roots. Plant Science, 169(2), 423–431.Google Scholar
  84. Huettner, J. E., & Baughman, R. W. (1986). Primary culture of identified neurons from the visual cortex of postnatal rats. The Journal of Neuroscience, 6(10), 3044–3060.Google Scholar
  85. Husain, S. S., & Lowe, G. (1970). A reinvestigation of residues 64–68 and 175 in papain. Evidence that residues 64 and 175 are asparagine. The Biochemical Journal, 116(4), 689–692.Google Scholar
  86. Ikeuchi, Y., Katerelos, N. A., & Goodenough, P. W. (1998). The enhancing of a cysteine proteinase activity at acidic pH by protein engineering, the role of glutamic 50 in the enzyme mechanism of caricain. FEBS Letters, 437(1–2), 91–96.Google Scholar
  87. Jacquet, A., Kleinschmidt, T., Schnek, A. G., Looze, Y., & Braunitzer, G. (1989). The thiol proteinases from the latex of Carica papaya L. III. The primary structure of chymopapain. Biological Chemistry Hoppe-Seyler, 370(5), 425–434.Google Scholar
  88. James, M. N. G. (2004). Catalytic pathway of aspartic peptidases. In A. J. Barrett, N. D. Rawlings, & J. F. Woessner (Eds.), Handbook of Proteolytic Enzymes. New York: Academic.Google Scholar
  89. Jansen, E. F., & Balls, A. K. (1941). Chymopapain: new crystal- line proteins from papaya latex. The Journal of Biological Chemistry, 137, 459–460.Google Scholar
  90. Jin, F., & Toda, K. (1988). Preparation of immobilized papain covalently bound on natural cellulose for treatment of beer. Biotechnology Letters, 10(3), 221–223.Google Scholar
  91. Johnston, R. B. (1956). Thiolesterase activity of papain. The Journal of Biological Chemistry, 221(2), 1037–1046.Google Scholar
  92. Jones, B. L. (2005). Endoproteases of barley and malt. Journal of Cereal Science, 42(2), 139–156.Google Scholar
  93. Jones, I. K., & Glazer, A. N. (1970). Comparative studies on four sulfhydryl endopeptidases (“Ficins”) of Ficus glabrata latex. The Journal of Biological Chemistry, 245, 2765–2772.Google Scholar
  94. Jung, Y., Choi, C., Park, J., Kang, H., Choi, J., Nou, I., et al. (2008). Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electronic Journal of Biotechnology, 11(1), 1–9.Google Scholar
  95. Kamphuis, I. G., Kalk, K. H., Swarte, M. B., & Drenth, J. (1984). Structure of papain refined at 1.65 A resolution. Journal of Molecular Biology, 179(2), 233–256.Google Scholar
  96. Kaneda, M., & Tominaga, N. (1975). Isolation and characterization of a proteinase from the sarcocarp of melon fruit. Journal of Biochemistry, 78(6), 1287–1296.Google Scholar
  97. Kennedy, J. F., & Pike, V. W. (1981). Papain, chymotrypsin and related proteins—a comparative study of their beer chill-proofing abilities and characteristics. Enzyme and Microbial Technology, 3(1), 59–63.Google Scholar
  98. Khaparde, S. S., & Singhal, R. S. (2001). Chemically modified papain for applications in detergent formulations. Bioresource Technology, 78(1), 1–4.Google Scholar
  99. Khouri, H. E., Vernet, T., Ménard, R., Parlati, F., Laflamme, P., Tessier, D. C., et al. (1991). Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry, 30(37), 8929–8936.Google Scholar
  100. Kim, M., Hamilton, S. E., Guddat, L. W., & Overall, C. M. (2007). Plant collagenase: unique collagenolytic activity of cysteine proteases from ginger. Biochimica et Biophysica Acta: General Subjects, 1770(12), 1627–1635.Google Scholar
  101. Kinoshita, K., Sato, K., Hori, M., Ozaki, H., & Karaki, H. (2003). Decrease in activity of smooth muscle L-type Ca2+ channels and its reversal by NF-kappaB inhibitors in Crohn’s colitis model. American Journal of Physiology. Gastrointestinal and Liver Physiology, 285(3), G483–G493.Google Scholar
  102. Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2010). Use of protein hydrolysate from yellow stripe trevally (Selaroides leptolepis) as microbial media. Food and Bioprocess Technology. doi:10.1007/s11947-010-0402-9.Google Scholar
  103. Kobayashi, T., Kobayashi, E., Sato, S., Hotta, Y., Miyajima, N., Tanaka, A., et al. (1994). Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Research, 1(1), 15–26.Google Scholar
  104. Kosaka, R. (1995) Detergents with high detergency even at low or high temperature. Jpn. Kokai Tokkyo Koho JP07 82, p. 597Google Scholar
  105. Kosaka, R. (1995) Bath preparations containing papain and organic acids. Jpn. Kokai Tokkyo Koho 7 82, p. 138Google Scholar
  106. Kotb, R. M., Abdella, A. A., El Kateb, M. A., & Ahmed, A. M. (2010). Clinical evaluation of Papacarie in primary teeth. The Journal of Clinical Pediatric Dentistry, 34(2), 117–123.Google Scholar
  107. Kramer, D. E., & Whitaker, J. R. (1969). Multiple molecular forms of ficin—evidence against autolysis as explanation. Plant Physiology, 44(11), 1560–1565.Google Scholar
  108. Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43–81.Google Scholar
  109. Kuwabara, T., & Suzuki, K. (1995). Reversible changes in conformation of the 23-kDa protein of photosystem-II and their relationship to the susceptibility of the protein to a proteinase from photosystem-II membranes. Plant & Cell Physiology, 36(3), 495–504.Google Scholar
  110. Lang, A., Hatscher, C., Wiegert, C., & Kuhl, P. (2009). Protease-catalysed coupling of N-protected amino acids and peptides with 4-aminoantipyrine. Amino Acids, 36(2), 333–340.Google Scholar
  111. Lawers, A., & Dekeyser, M. P. (1997). The cysteine proteases from the latex of Carica papaya L. In A. Lauwers & S. Scharpe (Eds.), Pharmaceutical Enzymes (pp. 107–131). New York: Marcel Dekker.Google Scholar
  112. Lee, K. L., Albee, K. L., Bernasconi, R. J., & Edmunds, T. (1997). Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases. The Biochemical Journal, 327(1), 199–202.Google Scholar
  113. Lei, H., Wang, W., Chen, L.-L., Li, X.-C., Yi, B., & Deng, L. (2004). The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres. Enzyme and Microbial Technology, 35(1), 15–21.Google Scholar
  114. Li, F.-Y., Xing, Y.-J., & Ding, X. (2007). Immobilization of papain on cotton fabric by sol-gel method. Enzyme and Microbial Technology, 40(7), 1692–1697.Google Scholar
  115. Liener, I. E. & Friedenson, B. (1970) Ficin. In G. E. Perlmann and L. Lorand (eds) Methods in Enzymology. New York: Academic, vol 19, pp 261–273.Google Scholar
  116. Lo Piero, A. R., & Petrone, G. (1999). Purification and partial characterization of an ATP-hydrolyzing serine protease from lettuce leaves. Phytochemistry, 51(3), 349–356.Google Scholar
  117. Lo Piero, A. R., Puglisi, I., & Petrone, G. (2002). Characterization of “Lettucine”, a serine-like protease from Lactuca sativa leaves, as a novel enzyme for milk clotting. Journal of Agricultural and Food Chemistry, 50(8), 2439–2443.Google Scholar
  118. Lopes, M. C., Mascarini, R. C., da Silva, B. M., Flório, F. M., & Basting, R. T. (2007). Effect of a papain-based gel for chemomechanical caries removal on dentin shear bond strength. Journal of Dentistry for Children, 74(2), 93–97.Google Scholar
  119. Lopez, L. M., Sequeiros, C., Natalucci, C. L., Brullo, A., Maras, B., Barra, D., et al. (2000). Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Expression and Purification, 18(2), 133–140.Google Scholar
  120. Lotz-Winter, H. (1990). On the pharmacology of bromelain: an update with special regard to animal studies on dose-dependent effects. Planta Medica, 56(3), 249–253.Google Scholar
  121. Lown, J. A., & Dale, B. J. (1995). Application of the proteolytic enzyme papain in routine platelet serology. Immunohematology, 11(4), 140–142.Google Scholar
  122. Lynn, K. R., & Yaguchi, M. (1979). N-terminal homology in three cysteinyl proteases from Papaya latex. Biochimica et Biophysica Acta, 581(2), 363–364.Google Scholar
  123. Malthouse, J. P., & Brocklehurst, K. (1976). Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2, 2′-depyridyl disulphide as a reactivity probe. The Biochemical Journal, 159(2), 221–234.Google Scholar
  124. Mariani, M., Camagna, M., Tarditi, L., & Seccamani, E. (1991). A new enzymatic method to obtain high yield F(ab’) mouse IgG1. Molecular Immunology, 28(1–2), 69–77.Google Scholar
  125. Martínez, D. E., Bartoli, C. G., Grbic, V., & Guiamet, J. J. (2007). Vacuolar cysteine proteases of wheat (Triticumaestivum L.) are common to leaf senescence induced by different factors. Journal of Experimental Botany, 58(5), 1099–1107.Google Scholar
  126. Maurer, H. R. (2001). Review: Bromelain: biochemistry, pharmacology and medical use. Cellular and Molecular Life Science, 58(9), 1234–1245.Google Scholar
  127. Ménard, R., Carriere, J., Laflamme, P., Plouffe, C., Khouri, H. E., Vernet, T., et al. (1991). Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry, 30(37), 8924–8928.Google Scholar
  128. Ménard, R., Khouri, H. E., Plouffe, C., Dupras, R., Ripoll, D., Vernet, T., et al. (1990). A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry, 29(28), 6706–6713.Google Scholar
  129. Ménard, R., Plouffe, C., Laflamme, P., Vernet, T., Tessier, D. C., Thomas, D. Y., et al. (1995). Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine protease papain. Biochemistry, 34, 464–471.Google Scholar
  130. Mendieta, J. R., Pagano, M. R., Muñoz, F. F., Daleo, G. R., & Guevara, M. G. (2006). Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization. Microbiology, 152(Pt 7), 2039–2047.Google Scholar
  131. Miller, M. F., Carr, M. A., Ramsey, C. B., Crockett, K. L., & Hoover, L. C. (2001). Consumer thresholds for establishing the value of beef tenderness. Journal of Animal Science, 79(12), 3062–3068.Google Scholar
  132. Mitchel, R. E. J., Chaiken, I. M., & Smith, E. (1970). The complete amino acid sequence of papain. Additions and corrections. The Journal of Biological Chemistry, 245(14), 3485–3492.Google Scholar
  133. Morcelle, S. R., Liggieri, C. S., Bruno, M. A., Priolo, N., & Clapés, P. (2009). Screening of plant peptidases for the synthesis of arginine-based surfactants. Journal of Molecular Catalysis. B, Enzymatic, 57(4), 177–182.Google Scholar
  134. Moutim, V., Silva, L. G., Lopes, M. T. P., Wilson Fernandes, G., & Salas, C. E. (1999). Spontaneous processing of peptides during coagulation of latex from Carica papaya. Plant Science, 142(2), 115–121.Google Scholar
  135. Mueller, M. S., & Mechler, E. (2005). Medicinal plants in tropical countries. Traditional use—Experience-facts. Stuttgart: Thieme.Google Scholar
  136. Muñoz, F. F., Mendieta, J. R., Pagano, M. R., Paggi, R. A., Daleo, G. R., & Guevara, M. G. (2010). The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides, 31(5), 777–785.Google Scholar
  137. Muntz, K., Belozersky, M. A., Dunaevsky, Y. E., Schlereth, A., & Tiedemann, J. (2001). Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. Journal of Experimental Botany, 52(362), 1741–1752.Google Scholar
  138. Murachi, T., Yasui, M., & Yasuda, Y. (1964). Purification and physical characterization of stem bromelain. Biochemistry, 3(1), 48–55.Google Scholar
  139. Muta, E., Aramaki, H., Takata, Y., Kono, A., Okamoto, Y, & Ota, S. (1993). Cloning and sequencing of fruit bromelain.Submitted (JAN-1993) to the EMBL/GenBank/DDBJ databases.Google Scholar
  140. Mutlu, A., & Gal, S. (1999). Plant aspartic proteinases: enzymes on the way to a function. Physiolgia Plantarum, 105(3), 569–576.Google Scholar
  141. Nakano, T., Murakami, S., Shoji, T., Yoshida, S., Yamada, Y., & Sato, F. (1997). A novel protein with DNA binding activity from tobacco chloroplast nucleoids. The Plant Cell, 9(9), 1673–1682.Google Scholar
  142. Napper, A. D., Bennett, S. P., Borowski, M., Holdridge, M. B., Leonard, M. J., Rogers, E. E., et al. (1994). Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. The Biochemical Journal, 301(Pt 3), 727–735.Google Scholar
  143. Narai-Kanayama, A., Koshino, H., & Aso, K. (2008). Mass spectrometric and kinetic studies on slow progression of papain-catalyzed polymerization of l-glutamic acid diethyl ester. Biochimica et Biophysica Acta, 1780(6), 881–891.Google Scholar
  144. Naveena, B. M., Mendiratta, S. K., & Anjaneyulu, A. S. R. (2004). Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Science, 68(3), 363–369.Google Scholar
  145. Newkirk, M. M., Edmundson, A., Wistar, R., Jr., Klapper, D. G., & Capra, J. D. (1987). A new protocol to digest human IgM with papain that results in homogeneous fab preparations that can be routinely crystallized. Hybridoma, 6(5), 453–460.Google Scholar
  146. Ottmann, C., Rose, R., Huttenlocher, F., Cedzich, A., Hauske, P., Kaiser, M., et al. (2009). Structural basis for Ca2 + -independence and activation by homodimerization of tomato subtilase 3. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 17223–17228.Google Scholar
  147. Pardo, M. F., Lopez, L. M., Canals, F., Aviles, F. X., Natalucci, C. L., & Caffini, N. O. (2000). Purification of balansain I, an endopeptidase unripe fruits of Bromelia balansae Mez (Bromeliaceae). Journal of Agricultural and Food Chemistry, 48(9), 3795–3800.Google Scholar
  148. Park, H., Kusakabe, I., Sakakibara, Y., & Kobayashi, H. (2001). Autoproteolytic processing of aspartic proteinase from sunflower seeds. Bioscience, Biotechnology, and Biochemistry, 65(3), 702–705.Google Scholar
  149. Pickersgill, R. W., Harris, G. W., & Garman, E. (1992). Structure of monoclinic papain at 1.60-A resolution. Acta Crystallographica. Section B, 48, 59–67.Google Scholar
  150. Pickersgill, R. W., Rizkallah, P., Harris, G. W., & Goodenough, P. W. (1991). Determination of the structure of papaya protease omega. Acta Crystallographica, B47, 766–771.Google Scholar
  151. Polaina, J., & MacCabe, A. P. (2007). Industrial Enzymes: Structure, Function and Applications. New York: Springer.Google Scholar
  152. Popovic, T., Kidric, M., Puizdar, V., & Brzin, J. (1998). Purification and characterization of two cysteine proteinases from Phaseolus vulgaris leaves. Plant Physiology and Biochemistry, 36(9), 637–645.Google Scholar
  153. Priest, F. G., & Stewart, G. G. (2006). Handbook of Brewing (2nd ed.). New York: CRC.Google Scholar
  154. Priolo, N., Del Valle, S. M., Arribere, M. C., Lopez, L., & Caffini, N. (2000). Isolation and characterization of a cysteine protease from the latex of Araujia hortorum fruits. Journal of Protein Chemistry, 19(1), 39–49.Google Scholar
  155. Quaglia, G. B., & Orban, E. (1987). Enzymic solubilisation of proteins of sardine (sardina pilchardus) by commercial proteases. Journal of the Science of Food and Agriculture, 38(3), 263–269.Google Scholar
  156. Radlowski, M., Kalinowski, A., Adamczyk, J., Krolikowski, Z., & Bartkowiak, S. (1996). Proteolytic activity in the maize pollen wall. Physiologia Plantarum, 98(1), 172–178.Google Scholar
  157. Rai, R., & Taneja, V. (1998). Papain catalysed hydantoin hydrolysis in the synthesis of amino acids. Biochemical and Biophysical Research Communications, 244(3), 889–892.Google Scholar
  158. Ramalho-Santos, M., Pissarra, J., Veríssimo, P., Pereira, S., Salema, R., Pires, E., et al. (1997). Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta, 203(2), 204–212.Google Scholar
  159. Ramjee, M. K., Petithory, J. R., McElver, J., Weber, S. C., & Kirsch, J. F. (1996). A novel yeast expression/secretion system for the recombinant plant thiol endoprotease propapain. Protein Engineering, 9(11), 1055–1061.Google Scholar
  160. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597–635.Google Scholar
  161. Rawlings, N.D. & Barrett, A.J. (1994). Families of cysteine peptidases. In: Methods in Enzymology Vol 244. Academic Press.Google Scholar
  162. Rawlings, N. D., Barrett, A. J., & Bateman, A. (1993). Evolutionary families of peptidases. The Biochemical Journal, 290, 205–218.Google Scholar
  163. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2010). MEROPS: the peptidase database. Nucleic Acids Research, 38, D227–D233.Google Scholar
  164. Revell, D. F., Cummings, N. J., Baker, K. C., Collins, M. E., Taylor, M. A., Sumner, I. G., et al. (1993). Nucleotide sequence and expression in Escherichia coli of cDNAs encoding papaya proteinase omega from Carica papaya. Gene, 127(2), 221–225.Google Scholar
  165. Ritchie, A. H., & Mackie, I. M. (1982). Preparation of fish protein hydrolysates. Animal Feed Science and Technology, 7(2), 125–133.Google Scholar
  166. Ritonja, A., Buttle, D. J., Rawlings, N. D., Turk, V., & Barrett, A. J. (1989). Papaya proteinase IV amino acid sequence. FEBS Letters, 258(1), 109–112.Google Scholar
  167. Ritonja, A., Rowan, A. D., Buttle, D. J., Rawlings, N. D., Turk, V., & Barrett, A. J. (1989). Stem bromelain: amino acid sequence and implications for weak binding of cystatin. FEBS Letters, 247(2), 419–424.Google Scholar
  168. Robertson, C.E. & Goodenough, P.W. (1997). Cloning and expression of ananain gene from pineapple. Submitted (NOV-1997) to the EMBL/GenBank/DDBJ databasesGoogle Scholar
  169. Rodrigo, I., Vera, P., & Conejero, V. (1989). Degradation of tomato pathogenesis-related proteins by an endogenous 37-kDa aspartyl endoproteinase. European Journal of Biochemistry, 184(3), 663–669.Google Scholar
  170. Rodrigo, I., Vera, P., Vanloon, L. C., & Conejero, V. (1991). Degradation of tobacco pathogenesis-related proteins – evidence for conserved mechanisms of degradation of pathogenesis-related proteins in plants. Plant Physiology, 95(2), 616–622.Google Scholar
  171. Rookard, L. E., Edmondson, O., & Greenwell, P. (2009). ABO reverse grouping: effect of varying concentrations of the enzyme bromelain. British Journal of Biomedical Science, 66(2), 93–97.Google Scholar
  172. Rose, R., Schaller, A. & Ottmann, C. (2010). Structural features of plant subtilases. Plant signaling & behavior, Feb 23; 5(2).Google Scholar
  173. Roseiro, L., Barbosa, M., Ames, J., & Wilbey, R. (2003). Cheesmaking with vegetable coagulants- the use of Cynara L. for the production of ovine milk cheese. International Journal of Dairy Technology, 56(2), 76–85.Google Scholar
  174. Rosenberg, L., Lapid, O., Bogdanov-Berezovsky, A., Glesinger, R., Krieger, Y., Silberstein, E., et al. (2004). Safety and efficacy of a proteolytic enzyme for enzymatic burn débridement: a preliminary report. Burns, 30(8), 843–850.Google Scholar
  175. Rowan, A. D., Buttle, D. J., & Barrett, A. J. (1988). Ananain: a novel cysteine proteinase found in pineapple stem. Archives of Biochemistry and Biophysics, 267(1), 262–270.Google Scholar
  176. Rowan, A. D., Buttle, D. J., & Barrett, A. J. (1990). The cysteine proteinases of the pineapple plant. The Biochemical Journal, 266(3), 869–875.Google Scholar
  177. Roy, J. J., Sumi, S., & Sangeetha, K. (2005). Chemical modification and immobilization of papain. Journal of Chemical Technology and Biotechnology, 80(2), 184–188.Google Scholar
  178. Rudenskaya, G. N., Bogacheva, A. M., Preusser, A., Kuznetsova, A. V., Dunaevsky, Y. E., Golovkin, B. N., et al. (1998). Taraxalisin—A serine proteinase from dandelion Taraxacum officinale Webb s.l. FEBS Letters, 437(3), 237–240.Google Scholar
  179. Rudenskaya, G. N., Bogdanova, E. A., Revina, L. P., Golovkin, B. N., & Stepanov, V. M. (1995). Macluralisin—A serine proteinase from fruits of Maclura pomifera (Raf.) Schneid. Planta, 196(1), 174–179.Google Scholar
  180. Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A., & Rasco, B. (2009). Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology. doi:10.1107/s11947-009-0225-8.Google Scholar
  181. Sagher, O., Szabo, T. A., Chenelle, A. G., & Jane, J. A. (1995). Intraoperative chemonucleolysis as an adjunct to lumbar discectomy. Spine, 20(17), 1923–1927.Google Scholar
  182. Salas, C. E., Gomes, M. T. R., Hernandez, M., & Lopes, M. T. P. (2008). Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry, 69(12), 2263–2269.Google Scholar
  183. Salmia, M. A. (1981). Proteinase activities in resting and germinating-seeds of Scots pine, Pinus sylvestris. Physiologia Plantarum, 53(1), 39–47.Google Scholar
  184. Sampaio, P. N., Fortes, A. M., Cabral, J. M., Pais, M. S., & Fonseca, L. P. (2008). Production and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303-1A) strain. Journal of Bioscience and Bioengineering, 105(4), 305–312.Google Scholar
  185. Sangeetha, K., & Abraham, T. E. (2006). Chemical modification of papain for use in alkaline medium. Journal of Molecular Catalysis. B, Enzymatic, 38(3–6), 171–177.Google Scholar
  186. Sarkkinen, P., Kalkkinen, N., Tilgmann, C., Siuro, J., Kervinen, J., & Mikola, L. (1992). Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin-D. Planta, 186(3), 317–323.Google Scholar
  187. Sarmento, A. C., Lopes, H., Oliveira, C. S., Vitorino, R., Samyn, B., Sergeant, K., et al. (2009). Multiplicity of aspartic proteinases from Cynara cardunculus L. Planta, 230(2), 429–439.Google Scholar
  188. Scannell, A. G., Kenneally, P. M., & Arendt, E. K. (2004). Contribution of starter cultures to the proteolytic process of a fermented non-dried whole muscle ham product. International Journal of Food Microbiology, 93(2), 219–230.Google Scholar
  189. Schaller, A. (2004). A cut above the rest: the regulatory function of plant proteases. Planta, 220(2), 183–197.Google Scholar
  190. Sekizaki, H., Toyota, E., Fuchise, T., Zhou, S., Noguchi, Y., & Horita, K. (2008). Application of several types of substrates to ficin-catalyzed peptide synthesis. Amino Acids, 34(1), 149–153.Google Scholar
  191. Sen, D. P., Sripathy, N. V., Lahiry, N. L., Sreenivasan, A., & Subrahmanyan, V. (1962). Fish hydrolysates.I. Rate of hydrolysis of fish flesh withpapain. Food Technology, 16(5), 138–141.Google Scholar
  192. Sermsart, B., Sripochang, S., Suvajeejarun, T., & Kiatfuengfoo, R. (2005). The molluscicidal activities of some Euphorbia milii hybrids against the snail Indoplanorbis exustus. The Southeast Asian Journal of Tropical Medicine and Public Health, 36(Suppl 4), 192–195.Google Scholar
  193. Sgarbieri, V. C., Gupte, S. M., Kramer, D. E., & Whitaker, J. R. (1964). Ficus enzymes I. Separation of the proteolytic enzymes of Ficus carica and Ficus glabrata lattices. The Journal of Biological Chemistry, 239, 2170–2177.Google Scholar
  194. Shuren, J. (2008). Topical drug products containing papain; Enforcement action dates. Washington DC: United States Food and Drug Administration, Department of Health and Human Services.Google Scholar
  195. Silva, L. G., Carcia, O., Lopes, M. T., & Salas, C. E. (1997). Changes in protein profile during coagulation of latex from Carica papaya. Brazilian Journal of Medical and Biological Research, 30(5), 615–619.Google Scholar
  196. Simmons, J. W., Nordby, E. J., & Hadjipavlou, A. G. (2001). Chemonucleolysis: the state of the art. European Spine Journal, 10(3), 192–202.Google Scholar
  197. Simoes, I., & Faro, C. (2004). Structure and function of plant aspartic proteinases. European Journal of Biochemistry, 271(11), 2067–2075.Google Scholar
  198. Simões, I., Faro, R., Bur, D., & Faro, C. (2007). Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. The Journal of Biological Chemistry, 282(43), 31358–31365.Google Scholar
  199. Soares, P.M.S., Calixto, F.C., & Planta, R.J. (2000). Instituto de Ciencia Aplicada e Technologia, assignee. Production by yeast of aspartic proteinases from plant origin. International Patente WO 00/75283A1.Google Scholar
  200. Sripathy, N. V., Sen, D. P., Lahiry, N. L., Sreenivasan, A., & Subrahmanyan, V. (1962). Fish hydrolysates. II. Standardization of digestion conditions for preparation of hydroly- sates rich in peptones and proteoses. Food Technology, 16(5), 141–142.Google Scholar
  201. Stepek, G., Buttle, D. J., Duce, I. R., Lowe, A., & Behnke, J. M. (2005). Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode Heligmosomoides polygyrus, in vitro. Parasitology, 130(Pt 2), 203–211.Google Scholar
  202. Stevenson, D. E., & Storer, A. C. (1991). Papain in organic solvents: determination of conditions suitable for biocatalysis and the effect on substrate specificity and inhibition. Biotechnology and Bioengineering, 37(6), 519–527.Google Scholar
  203. Storer, A.C. & Ménard, R. (1994). Catalytic mechanism in papain family of cysteine peptidases. In: Methods in Enzymology Vol 244. Academic Press.Google Scholar
  204. Sullivan, G.A., & Calkins, C.R. (2010). Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat science Mar 27.Google Scholar
  205. Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technology and Biotechnology, 44(2), 211–220.Google Scholar
  206. Sutoh, K., Kato, H., & Minamikawa, T. (1999). Identification and possible roles of three types of endopeptidase from germinated wheat seeds. Journal of Biochemistry, 126(4), 700–707.Google Scholar
  207. Tai, D. F., Huang, H. Y., & Huang, C. C. (1995). Immobilized ficin catalyzed synthesis of peptides in organic solvent. Bioorganic & Medicinal Chemistry Letters, 5(14), 1475–1478.Google Scholar
  208. Tanabe, S., Arai, S., & Watanabe, M. (1996). Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients. Bioscience, Biotechnology, and Biochemistry, 60(8), 1269–1272.Google Scholar
  209. Taylor, M. A. J., Al-Sheikh, M., Revell, D. F., Sumner, I. G., & Connerton, I. F. (1999). cDNA cloning and expression of Carica papaya prochymopapain isoforms in Escherichia coli. Plant Science, 145(1), 41–47.Google Scholar
  210. Taylor, M. A., Baker, K. C., Briggs, G. S., Connerton, I. F., Cummings, N. J., Pratt, K. A., et al. (1995). Recombinant pro-regions from papain and papaya proteinase IV are selective high affinity inhibitors of the mature papaya enzymes. Protein Engineering, 8(1), 59–62.Google Scholar
  211. Taylor, M. A., Baker, K. C., Connerton, I. F., Cummings, N. J., Harris, G. W., Henderson, I. M., et al. (1994). An unequivocal example of cysteine proteinase activity affected by multiple electrostatic interactions. Protein Engineering, 7(10), 1267–1276.Google Scholar
  212. Taylor, M. A., Pratt, K. A., Revell, D. F., Baker, K. C., Sumner, I. G., & Goodenough, P. W. (1992). Active papain renatured and processed from insoluble recombinant propapain expressed in Escherichia coli. Protein Engineering, 5(5), 455–459.Google Scholar
  213. Terp, N., Thomsen, K. K., Svendsen, I., Davy, A., & Simpson, D. J. (2000). Purification and characterization of hordolisin, a subtilisin-like serine endoprotease from barley. Journal of Plant Physiology, 156(4), 468–476.Google Scholar
  214. Thakurta, P. G., Biswas, S., Chakrabarti, C., Sundd, M., Jagannadham, M. V., & Dattagupta, J. K. (2004). Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria. Biochemistry, 43(6), 1532–1540.Google Scholar
  215. Theodorou, L. G., Bieth, J. G., & Papamichael, E. M. (2007). The catalytic mode of cysteine proteinases of papain (C1) family. Bioresource Technology, 98(10), 1931–1939.Google Scholar
  216. Theppakorn, T., Kanasawud, P., & Halling, P. J. (2004). Activity of immobilized papain dehydrated by n-propanol in low-water media. Biotechnology Letters, 26(2), 133–136.Google Scholar
  217. Thomson, A. B. R., Keelan, M., Thiesen, A., Clandinin, M. T., Ropeleski, M., & Wild, G. E. (2001). Small bowel review: normal physiology part 1. Digestive Diseases and Sciences, 46(12), 2567–2587.Google Scholar
  218. Tokes, Z. A., Woon, W. C., & Chambers, S. M. (1974). Digestive enzymes secreted by carnivorous plant Nepenthes macferlanei L. Planta, 119(1), 39–46.Google Scholar
  219. Tomar, R., Kumar, R., & Jagannadham, M. V. (2008). A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: purification and biochemical properties. Journal of Agricultural and Food Chemistry, 56(4), 1479–1487.Google Scholar
  220. Tornero, P., Conejero, V., & Vera, P. (1996). Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: similarity of functional domains to subtilisin-like endoproteases. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6332–6337.Google Scholar
  221. Uchikoba, T., & Kaneda, M. (1996). Milk-clotting activity of cucumisin, a plant serine protease from Melon fruit. Applied Biochemistry and Biotechnology, 56(3), 325–330.Google Scholar
  222. Uchikoba, T., Yonezawa, H., & Kaneda, M. (1995). Cleavage specificity of cucumisin, a plant serine protease. Journal of Biochemistry, 117(5), 1126–1130.Google Scholar
  223. Uhlig, H. (1998). Industrial Enzymes and Their Applications (pp. 147–161). Chichester: Wiley.Google Scholar
  224. Uyama, H., Fukuoka, T., Komatsu, I., Watanabe, T., & Kobayashi, S. (2002). Protease-catalyzed regioselective polymerization and copolymerization of glutamic acid diethyl ester. Biomacromolecules, 3(2), 318–323.Google Scholar
  225. Van Beckhoven, R. F., Zenting, H. M., Maurer, K. H., Van Solingen, P. & Weiss, A. (1995) Bacillus cellulases and its application for detergents and textile treatment. European Patent. EP 739.Google Scholar
  226. Van Der Hoorn, R. A., & Jones, J. D. (2004). The plant proteolytic machinery and its role in defence. Current Opinion in Plant Biology, 7(4), 400–407.Google Scholar
  227. Vanhoof, G., & Cooreman. (1997). Bromelain. In A. Lauwers & S. Scharpe (Eds.), Pharmaceutical Enzymes (pp. 131–155). New York: Marcel Dekker.Google Scholar
  228. Vega, R. E., & Brennan, J. G. (1988). Enzymic hydrolysis of fish offal without added water. Journal of Food Engineering, 8(3), 201–215.Google Scholar
  229. Veríssimo, P., Esteves, C., Faro, C. J., & Pires, E. V. (1995). The vegetable rennet of Cynara cardunculus contains two proteinases with chymosin and pepsin-like specificities. Biotechnology Letters, 17(6), 621–626.Google Scholar
  230. Veríssimo, P., Faro, C., Moir, A. J. G., Lin, Y., Tang, J., & Pires, E. (1996). Purification, characterization and partial amino acid sequence of two novel aspartic proteinases from fresh flowers of Cynara cardunculus L. European Journal of Biochemistry, 235(3), 762–768.Google Scholar
  231. Vernet, T., Chatellier, J., Tessier, D. C., & Thomas, D. Y. (1993). Expression of functional papain precursor in Saccharomyces cerevisiae: rapid screening of mutants. Protein Engineering, 6(2), 213–219.Google Scholar
  232. Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., et al. (1991). Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. The Journal of Biological Chemistry, 266(32), 21451–21457.Google Scholar
  233. Vernet, T., Tessier, D. C., Laliberte, F., Dignard, D., & Thomas, D. Y. (1989). The expression in Escherichia coli of a synthetic gene coding for the precursor of papain is prevented by its own putative signal sequence. Gene, 77(2), 229–236.Google Scholar
  234. Versari, A., Ménard, R., & Lortie, R. (2002). Enzymatic hydrolysis of nitrides by an engineered nitrile hydratase (Papain Gln19Glu) in aqueous-organic. Biotechnology and Bioengineering, 79(1), 9–14.Google Scholar
  235. Vieira, M., Pissarra, J., Veríssimo, P., Castanheira, P., Costa, Y., Pires, E., et al. (2001). Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Molecular Biology, 45(5), 529–539.Google Scholar
  236. Vincent, J. L., & Brewin, N. J. (2000). Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiology, 123(2), 521–530.Google Scholar
  237. Visal, S., Taylor, M. A., & Michaud, D. (1998). The proregion of papaya proteinase IV inhibits Colorado potato beetle digestive cysteine proteinases. FEBS Letters, 434(3), 401–405.Google Scholar
  238. Voigt, J., Kamaruddin, S., Heinrichs, H., Wrann, D., Senyuk, V., & Biehl, B. (1995). Developmental stage-dependent variation of the levels of globular storage protein and aspartic endoprotease during ripening and germination of Theobroma cacao L. seeds. Journal of Plant Physiolgy, 145(3), 299–307.Google Scholar
  239. Wallace, R. H. (1922). Vegetable Rennet Nature, 110(2764), 543.Google Scholar
  240. Wang, Y. T., Yang, C. Y., Chen, Y. T., Lin, Y., & Shaw, J. F. (2004). Characterization of senescence-associated proteases in postharvest broccoli florets. Plant Physiology and Biochemistry, 42(7–8), 663–670.Google Scholar
  241. Wang, J. S., Zhao, M. M., Zhao, Q. Z., Bao, Y., & Jiang, Y. M. (2007). Characterization of hydrolysates derived from enzymatic hydrolysis of wheat gluten. Journal of Food Science, 72(2), C103–C107.Google Scholar
  242. Wang, J. S., Zhao, M. M., Zhao, Q. Z., & Jiang, Y. M. (2007). Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chemistry, 101(4), 1658–1663.Google Scholar
  243. Watson, D. C., Yaguchi, M., & Lynn, K. (1990). The amino acid sequence of chymopapain from Carica papaya. The Biochemical Journal, 266(1), 75–81.Google Scholar
  244. Wharton, C. (1974). The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-L-phenylalanyl-L-serine methyl ester. The Biochemical Journal, 143(3), 575–586.Google Scholar
  245. White, P. C., Cordeiro, M. C., Arnold, D., Brodelius, P. E., & Kay, J. (1999). Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus). The Journal of Biological Chemistry, 274(24), 16685–16693.Google Scholar
  246. Whitehurst, R. J., & Van Oort, M. (Eds.). (2010). Enzymes in food technology. West Sussex: Wiley-Blackwell.Google Scholar
  247. Williams, D. C., & Whitaker, J. R. (1969). Multiple molecular forms of Ficus glabrata Ficin. Their separation and relative physical, chemical, and enzymatic properties. Plant Physiology, 44, 1574–1583.Google Scholar
  248. Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., et al. (2004). An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. The EMBO Journal, 23(4), 980–988.Google Scholar
  249. Xue, Y., Nie, H., Zhu, L., Li, S., & Zhang, H. (2010). Immobilization of modified papain with anhydride groups on activated cotton fabric. Applied Biochemistry and Biotechnology, 160(1), 109–121.Google Scholar
  250. Yadav, S. C., & Jagannadham, M. V. (2008). Physiological changes and molluscicidal effects of crude latex and milin on Biomphalaria glabrata. Chemosphere, 71(7), 1295–1300.Google Scholar
  251. Yadav, S. C., Jagannadham, M. V., & Kundu, S. (2010). Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates. European Biophysics Journal, 39(10), 1385–1396.Google Scholar
  252. Yadav, S. C., Pande, M., & Jagannadham, M. V. (2006). Highly stable glycosylated serine protease from the medicinal plant Euphorbia milii. Phytochemistry, 67(14), 1414–1426.Google Scholar
  253. Yamagata, H., Aizono, Y. & Hirata, A. (2007) DNA sequence regulating plant fruit-specific expression Patent US 7202355.Google Scholar
  254. Yamagata, H., Masuzawa, T., Nagaoka, Y., Ohnishi, T., & Iwasaki, T. (1994). Cucumisin, a serine protease from melon fruit, shares structural homology with subtilisin and is generated from a large precursor. The Journal of Biological Chemistry, 269(52), 32725–32731.Google Scholar
  255. Yamagata, H., Yonesu, K., Hirata, A., & Aizono, Y. (2002). TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. The Journal of Biological Chemistry, 277(13), 11582–11590.Google Scholar
  256. Yoshida-Yamamoto, S., Nishimura, S., Okuno, T., Rakuman, M. & Takii, Y. (2010) Efficient DNA Extraction from Nail Clippings Using the Protease Solution from Cucumis melo. Molecular biotechnology, Mar 20, 1073–6085.Google Scholar
  257. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of Pharmacy and School of BiotechnologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations