Food and Bioprocess Technology

, Volume 4, Issue 6, pp 936–953 | Cite as

Advances in DNA Microarray Technology for the Detection of Foodborne Pathogens

  • Marco Severgnini
  • Paola Cremonesi
  • Clarissa Consolandi
  • Gianluca De Bellis
  • Bianca Castiglioni
Review Paper


Hundreds of foodborne infection cases occur around the world, and up to one third of the population in industrialized nations suffers from foodborne illness each year. The advent of genetic-based technologies made feasible developing sensitive and specific screening tests for the detection of microbial pathogens. Microarray-based technologies represent an advance in nucleic acid testing methods whose main features include miniaturization, ability to parallelize sample processing, and ease of automation. Many applications, based on both commercial and custom arrays, have already been reported. The constant attempt to obtain reliable, sensitive, and robust methods has also driven the development of different molecular methods, relying on hybridization or on enzymatic techniques (such as minisequencing/extension or ligation). At the same time, probe design strategies and data analysis pipelines have been refined as well, in order to make result evaluations faster and less prone to errors. The high number of genetic information already available allowed reaching a resolution below the species level, being able to discriminate among serovars or strains, thanks to the careful choice of variable regions. Currently, the sensitivity of the assays can be as low as 1 CFU/g for some bacteria after enrichment. In this review, we present an overview of the most important advances in microarray technologies in the foodborne pathogen detection field.


DNA microarray Food Pathogen Review 


  1. Abubakar, I., Irvine, L., Aldus, C. F., Wyatt, G. M., Fordham, R., Schelenz, S., et al. (2007). A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technology Assessment, 11, 1–216.Google Scholar
  2. Ahn, S., & Walt, D. R. (2005). Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. Analytical Chemistry, 77, 5041–5047.CrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.Google Scholar
  4. Asakura, M., Samosornsuk, W., Hinenoya, A., Misawa, N., Nishimura, K., Matsuhisa, A., et al. (2008). Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunology and Medical Microbiology, 52, 260–266.CrossRefGoogle Scholar
  5. Ashelford, K. E., Weightman, A. J., & Fry, J. C. (2002). PRIMROSE: A computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Research, 30, 3481–3489.CrossRefGoogle Scholar
  6. Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61, 1–10.CrossRefGoogle Scholar
  7. Bresee, J. S., Widdowson, M.-A., Monroe, S. S., & Glass, R. I. (2002). Foodborne viral gastroenteritis: Challenges and opportunities. Clinical Infectious Diseases, 35, 748–753.CrossRefGoogle Scholar
  8. Brooks, J. L., Mirhabibollahi, B., & Kroll, R. G. (1992). Experimental enzyme-linked amperometric immunosensors for the detection of salmonellas in foods. The Journal of Applied Bacteriology, 73, 189–196.Google Scholar
  9. Bryan, F. L. (1982). Diseases transmitted by foods. Atlanta: Centers for Disease Control.Google Scholar
  10. Burton, J. E., Oshota, O. J., North, E., Hudson, M. J., Polyanskaya, N., Brehm, J., et al. (2005). Development of a multi-pathogen oligonucleotide microarray for detection of Bacillus anthracis. Molecular and Cellular Probes, 19, 349–357.CrossRefGoogle Scholar
  11. Candela, M., Consolandi, C., Severgnini, M., Biagi, E., Castiglioni, B., Vitali, B., et al. (2010). High taxonomic level fingerprint of the human intestinal microbiota by ligase detection reaction—Universal array approach. BMC Microbiology, 10, 116.Google Scholar
  12. Charbonnier, Y., Gettler, B., François, P., Bento, M., Renzoni, A., Vaudaux, P., et al. (2005). A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus. BMC Genomics, 17, 6–95.Google Scholar
  13. Chen, J., Iannone, M. A., Li, M. S., Taylor, D., Rivers, P., Nelsen, A. J., et al. (2000). A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genetic Research, 10, 549–557.Google Scholar
  14. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., et al. (2003). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Research, 31, 3497–3500.CrossRefGoogle Scholar
  15. Chiang, Y. C., Yang, C. Y., Li, C., Ho, Y. C., Lin, C. K., & Tsen, H. Y. (2006). Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization. International Journal of Food Microbiology, 107, 131–137.CrossRefGoogle Scholar
  16. Chizhikov, V., Rasooly, A., Chumakov, K., & Levy, D. D. (2001). Microarray analysis of microbial virulence factors. Applied and Environmental Microbiology, 67, 3258–3263.CrossRefGoogle Scholar
  17. Cremonesi, P., Pisoni, G., Severgnini, M., Consolandi, C., Moroni, P., Raschetti, M., et al. (2009). Pathogen detection in milk samples by ligation detection reaction-mediated universal array method. Journal of Dairy Science, 92, 3027–3039.CrossRefGoogle Scholar
  18. Deisingh, A. K., & Thompson, M. (2004). Biosensors for the detection of bacteria. Canadian Journal of Microbiology, 50, 69–77.CrossRefGoogle Scholar
  19. Eom, H. S., Hwang, B. H., Kim, D. H., Lee, I. B., Kim, Y. H., & Cha, H. J. (2007). Multiple detection of foodborne pathogenic bacteria using a novel 16S rDNA-based oligonucleotide signature chip. Biosensors & Bioelectronics, 22, 845–853.CrossRefGoogle Scholar
  20. European Food Safety Authority (2009). Food-borne outbreaks in the European Union in 2007. The Community Summary Report.
  21. Feng, S., & Tillier, E. R. (2007). A fast and flexible approach to oligonucleotide probe design for genomes and gene families. Bioinformatics, 23, 1195–1202.CrossRefGoogle Scholar
  22. Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., & Solas, D. (1991). Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773.CrossRefGoogle Scholar
  23. Frahm, E., Heiber, I., Hoffmann, S., Koob, C., Meier, H., Ludwig, W., et al. (1998). Application of 23S rDNA-targeted oligonucleotide probes specific for enterococci to water hygiene control. Systematic and Applied Microbiology, 21, 450–453.Google Scholar
  24. Gannon, V. P. J., Dsouza, S., Graham, T., King, R. K., Rahn, K., & Read, S. (1997). Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic Escherichia coli strains. Journal of Clinical Microbiology, 35, 656–662.Google Scholar
  25. Gharizadeh, B., Kaller, M., Nyren, P., Andersson, A., Uhlen, M., Lundeberg, J., et al. (2003). Viral and microbial genotyping by a combination of multiplex competitive hybridization and specific extension followed by hybridization to generic tag arrays. Nucleic Acids Research, 31, e146.CrossRefGoogle Scholar
  26. Ghindilis, A. L., Smith, M. W., Schwarzkopf, K. R., Roth, K. M., Peyvan, K., Munro, S. B., et al. (2007). CombiMatrix oligonucleotide arrays: Genotyping and gene expression assays employing electrochemical detection. Biosensors & Bioelectronics, 22, 1853–1860.CrossRefGoogle Scholar
  27. Giannino, M. L., Aliprandi, M., Feligini, M., Vanoni, L., Brasca, M., & Fracchetti, F. (2009). A DNA array based assay for the characterization of microbial community in raw milk. Journal of Microbiological Methods, 78, 181–188.CrossRefGoogle Scholar
  28. Granum, P. E. (1990). Clostridium perfringens toxins involved in food poisoning. International Journal of Food Microbiology, 10, 101–111.CrossRefGoogle Scholar
  29. Gu, X. X., Rossau, R., Jannes, G., Ballard, R., Laga, M., & Van Dyck, E. (1998). The rrs (16S)-rrl (23S) ribosomal intergenic spacer region as a target for the detection of Haemophilus ducreyi by a heminested-PCR assay. Microbiology, 144, 1013–1019.CrossRefGoogle Scholar
  30. Hamid, M. E., Roth, A., Landt, O., Kroppenstedt, R. M., Goodfellow, M., & Mauch, H. (2002). Differentiation between Mycobacterium farcinogenes and Mycobacterium senegalense species based on 16S–23S ribosomal DNA internal transcribed spacer sequences. Journal of Clinical Microbiology, 40, 707–711.CrossRefGoogle Scholar
  31. Helps, C. R., Harbour, D. A., & Corry, J. E. (1999). PCR-based 16S ribosomal DNA detection technique for Clostridium estertheticum causing spoilage in vacuum-packed chill-stored beef. International Journal of Food Microbiology, 52, 57–65.CrossRefGoogle Scholar
  32. Hong, B. X., Jiang, L. F., Hu, Y. S., Fang, D. Y., & Guo, H. Y. (2004). Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections. Journal of Microbiological Methods, 58, 403–411.CrossRefGoogle Scholar
  33. Jackson, G. J., Merker, R. I., & Bandler, R. (2001). Bacteriological analytical manual online. Retrieved 12 November 2003 from
  34. Jin, H. Y., Tao, K. H., Li, Y. X., Li, F. Q., & Li, S. Q. (2005). Microarray analysis of Escherichia coli O157:H7. World Journal of Gastroenterology, 11, 5811–5815.Google Scholar
  35. Kim, H. J., Park, S. H., Lee, T. H., Nahm, B. H., Kim, Y. R., & Kim, H. Y. (2008). Microarray detection of foodborne pathogens using specific probes prepared by comparative genomics. Biosensors & Bioelectronics, 15, 238–246.CrossRefGoogle Scholar
  36. Kotiranta, A., Lounatmaa, K., & Haapasalo, M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infectious, 2, 189–198.CrossRefGoogle Scholar
  37. Lei, I. F., Roffey, P., Blanchard, C., & Gu, K. (2008). Development of a multiplex PCR method for the detection of six common foodborne pathogens. Journal of Food and Drug Analysis, 16, 37–43.Google Scholar
  38. Li, Y., Liu, D., Cao, B., Han, W., Liu, Y., Liu, F., et al. (2006). Development of a serotype-specific DNA microarray for identification of some Shigella and pathogenic Escherichia coli strains. Journal of Clinical Microbiology, 44, 4376–4383.CrossRefGoogle Scholar
  39. Lin, B., Blaney, K. M., Malanoski, A. P., Ligler, A. G., Schnur, J. M., Metzgar, D., et al. (2007). Using a resequencing microarray as a multiple respiratory pathogen detection assay. Journal of Clinical Microbiology, 45, 443–452.CrossRefGoogle Scholar
  40. Lovmar, L., Fock, C., Espinoza, F., Bucardo, F., Syvanen, A. C., & Bondeson, K. (2003). Microarrays for genotyping human group a rotavirus by multiplex capture and type-specific primer extension. Journal of Clinical Microbiology, 41, 5153–5158.CrossRefGoogle Scholar
  41. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004). ARB: A software environment for sequence data. Nucleic Acids Research, 32, 1363–1371.CrossRefGoogle Scholar
  42. Madico, G., Quinn, T. C., Boman, J., & Gaydos, C. A. (2000). Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S–23S spacer rRNA genes. Journal of Clinical Microbiology, 38, 1085–1093.Google Scholar
  43. Maslanka, S. E., Kerr, J. G., Williams, G., Barbaree, J. M., Carson, L. A., Miller, J. M., et al. (1999). Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate foodborne-disease outbreak investigations. Journal of Clinical Microbiology, 37, 2209–2214.Google Scholar
  44. Matar, G. M., Koehler, J. E., Malcolm, G., Lambert-Fair, M. A., Tappero, J., Hunter, S. B., et al. (1999). Identification of Bartonella species directly in clinical specimens by PCR-restriction fragment length polymorphism analysis of a 16S rRNA gene fragment. Journal of Clinical Microbiology, 37, 4045–4047.Google Scholar
  45. Maynard, C., Berthiaume, F., Lemarchand, K., Harel, J., Payment, P., Bayardelle, P., et al. (2005). Waterborne pathogen detection by use of oligonucleotide-based microarrays. Applied and Environmental Microbiology, 71, 8548–8557.CrossRefGoogle Scholar
  46. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., & Shapiro, C. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.CrossRefGoogle Scholar
  47. Mikhailovich, V., Gryadunov, D., Kolchinsky, A., Makarov, A. A., & Zasedatelev, A. (2008). DNA microarrays in the clinic: Infectious diseases. Bioassays, 30, 673–682.CrossRefGoogle Scholar
  48. Miller, M. B. (2009). Solid and liquid phase array technologies. In D. Persing, F. Tenover, R. Hayden, F. Nolte, Y. W. Tang, & A. Van Belkum (Eds.), Molecular microbiology: Diagnostic principles and practice (2nd ed.). Washington: ASM.Google Scholar
  49. Mor-Mur, M., & Yuste, J. (2010). Emerging bacterial pathogens in meat and poultry: An overview. Food and Bioprocess Technology, 3, 24–35.CrossRefGoogle Scholar
  50. Mothershed, E. A., & Whitney, A. M. (2006). Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clinica Chimica Acta, 363, 206–220.CrossRefGoogle Scholar
  51. Naravaneni, R., & Jamil, K. (2005). Rapid detection of foodborne pathogens by using molecular techniques. Journal of Medical Microbiology, 54, 51–54.CrossRefGoogle Scholar
  52. Neethirajan, S., & Jayas, D.S. (2010). Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technology. doi:10.1007/s11947-010-0328-2.
  53. Nittler, M. P., Hocking-Murray, D., Foo, C. K., & Sil, A. (2005). Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Molecular Biology of the Cell, 16, 4792–4813.CrossRefGoogle Scholar
  54. Panicker, G., Call, D. R., Krug, M. J., & Bej, A. K. (2004). Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Applied and Environmental Microbiology, 70, 7436–7444.CrossRefGoogle Scholar
  55. Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., & Frey, J. (2005). Microarray-based detection of 90 antibiotic resistance genes of Gram-positive bacteria. Journal of Clinical Microbiology, 43, 2291–2302.CrossRefGoogle Scholar
  56. Pingle, M. R., Granger, K., Feinberg, P., Shatsky, R., Sterling, B., Rundell, M., et al. (2007). Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rRNA gene PCR-ligase detection reaction–capillary electrophoresis assay. Journal of Clinical Microbiology, 45, 1927–1935.CrossRefGoogle Scholar
  57. Radke, S. M., & Alocilja, E. C. (2005). A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors & Bioelectronics, 20, 1662–1667.CrossRefGoogle Scholar
  58. Ruan, C., Yang, L., & Li, Y. (2002). Rapid detection of viable Salmonella typhimurium in a selective medium by monitoring oxygen consumption with electrochemical cyclic voltammetry. Journal of Electroanalitical Chemistry, 519, 33–38.CrossRefGoogle Scholar
  59. Rudi, K., Treimo, J., Nissen, H., & Vegarud, G. (2003). Protocols for 16S rDNA array analyses of microbial communities by sequence-specific labeling of DNA probes. Scientific World Journal, 3, 578–584.Google Scholar
  60. Sasaki, Y., Yamamoto, K., Amimoto, K., Kojima, A., Ogikubo, Y., Norimatsu, M., et al. (2001). Amplification of the 16S–23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum. Research in Veterinary Science, 71, 227–229.CrossRefGoogle Scholar
  61. Sergeev, N., Volokhov, D., Chizhikov, V., & Rasooly, A. (2004). Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. Journal of Clinical Microbiology, 42, 2134–2143.CrossRefGoogle Scholar
  62. Sergeev, N., Distler, M., Vargas, M., Chizhikov, V., Herold, K. E., & Rasooly, A. (2006). Microarray analysis of Bacillus cereus group virulence factors. Journal of Microbiological Methods, 65, 488–502.CrossRefGoogle Scholar
  63. Severgnini, M., Cremonesi, P., Consolandi, C., Caredda, G., De Bellis, G., & Castiglioni, B. (2009). ORMA: A tool for identification of species-specific variations in 16S rRNA gene and oligonucleotides design. Nucleic Acids Research, 37, 119.CrossRefGoogle Scholar
  64. Siqueira, J. F., Rocas, I. N., Favieri, A., & Santos, K. R. (2000). Detection of Treponema denticola in endodontic infections by 16S rRNA gene-directed polymerase chain reaction. Oral Microbiology and Immunology, 15, 335–337.CrossRefGoogle Scholar
  65. Smith, J. G., Kong, L., Abruzzo, G. K., Gill, C. J., Flattery, A. M., Scott, P. M., et al. (1996). PCR detection of colonization by Helicobacter pylori in conventional, euthymic mice based on the 16S ribosomal gene sequence. Clinical Diagnosis and Laboratory Immunology, 3, 66–72.Google Scholar
  66. Stenberg, J., Nilsson, M., & Landegren, U. (2005). ProbeMaker: An extensible framework for design of sets of oligonucleotide probes. BMC Bioinformatics, 19(6), 229.CrossRefGoogle Scholar
  67. Straub, J. A., Hertel, C., & Hammes, W. P. (1999). A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. Journal of Food Protection, 62, 1150–1156.Google Scholar
  68. Suo, B., He, Y., Paoli, G., Gehring, A., Tu, S. I., & Shi, X. (2010). Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Molecular and Cellular Probes, 24, 77–86.CrossRefGoogle Scholar
  69. Tesfaye, M., & Holl, F. B. (1998). Group-specific differentiation of Rhizobium from clover species by PCR amplification of 23S rDNA sequences. Canadian Journal of Microbiology, 44, 1102–1105.Google Scholar
  70. Thiyagarajan, S., Karhanek, M., Akhras, M., Davis, R. W., & Pourmand, N. (2006). PathogenMIPer: A tool for the design of molecular inversion probes to detect multiple pathogens. BMC Bioinformatics, 7, 500.CrossRefGoogle Scholar
  71. Troesch, A., Nguyen, H., Miyada, C. G., Desvarenne, S., Gingeras, T. R., Kaplan, P. M., et al. (1999). Mycobacterium species identification and rifampin resistance testing with high density DNA probe arrays. Journal of Clinical Microbiology, 37, 49–55.Google Scholar
  72. Volokhov, D., Rasooly, A., Chumakov, K., & Chizhikov, V. (2002). Identification of Listeria species by microarray-based assay. Journal of Clinical Microbiology, 40, 4720–4728.CrossRefGoogle Scholar
  73. Volokhov, D., Chizhikov, V., Chumakov, K., & Rasooly, A. (2003). Microarray-based identification of thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. Journal of Clinical Microbiology, 41, 4071–4080.CrossRefGoogle Scholar
  74. Vora, G. J., Meador, C. E., Stenger, D. A., & Andreadis, J. D. (2004). Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Applied and Environmental Microbiology, 70, 3047–3054.CrossRefGoogle Scholar
  75. Wang, R. F., Beggs, M. L., Robertson, L. H., & Cerniglia, C. E. (2002a). Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiological Letters, 213, 175–182.CrossRefGoogle Scholar
  76. Wang, R. F., Kim, S. J., Robertson, L. H., & Cerniglia, C. E. (2002b). Development of a membrane-array method for detection of human intestinal bacteria in fecal samples. Molecular and Cellular Probes, 16, 341–350.CrossRefGoogle Scholar
  77. Wang, X. W., Zhang, L., Jin, L. Q., Jin, M., Shen, Z. Q., An, S., et al. (2007). Development and application of an oligonucleotide microarray for the detection of foodborne bacterial pathogens. Applied Microbiology and Biotechnology, 76, 225–233.CrossRefGoogle Scholar
  78. Warsen, A. E., Krug, M. J., LaFrentz, S., Stanek, D. R., Loge, F. J., & Call, D. R. (2004). Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Applied and Environmental Microbiology, 70, 4216–4221.CrossRefGoogle Scholar
  79. Wells, C. A., Chalk, A. M., Forrest, A., Taylor, D., Waddell, N., Schroder, K., et al. (2006). Alternate transcription of the Toll-like receptor signaling cascade. Genome Biology, 7, R10.CrossRefGoogle Scholar
  80. Wilson, W. J., Strout, C. L., DeSantis, T. Z., Stilwell, J. L., Carrano, A. V., & Andersen, G. L. (2002a). Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Molecular and Cellular Probes, 16, 119–127.CrossRefGoogle Scholar
  81. Wilson, K. H., Wilson, W. J., Radosevich, J. L., DeSantis, T. Z., Viswanathan, V. S., Kuczmarski, T. A., et al. (2002b). High-density microarray of small-subunit ribosomal DNA probes. Applied and Environmental Microbiology, 68, 2535–2541.CrossRefGoogle Scholar
  82. Wong, H. C., Liu, S. H., Ku, L. W., Lee, I. Y., Wang, T. K., Lee, Y. S., et al. (2000). Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. Journal of Food Protection, 63, 900–906.Google Scholar
  83. Yamazaki-Matsune, W., Taguchi, M., Seto, K., Kawahara, R., Kawatsu, K., Kumeda, Y., et al. (2007). Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis. Journal of Medical Microbiology, 56, 1467–1473.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Marco Severgnini
    • 1
  • Paola Cremonesi
    • 2
  • Clarissa Consolandi
    • 1
  • Gianluca De Bellis
    • 1
  • Bianca Castiglioni
    • 2
  1. 1.ITB-CNRSegrateItaly
  2. 2.IBBA-CNRMilanItaly

Personalised recommendations