Advertisement

Food and Bioprocess Technology

, Volume 4, Issue 6, pp 1060–1065 | Cite as

In vitro Growth Inhibition of Food-borne Pathogens and Food Spoilage Microorganism by Vitamin K5

  • Jose M. MirandaEmail author
  • Fabiao Jorge
  • Lucas Dominguez
  • Alberto Cepeda
  • Carlos M. Franco
Original Paper

Abstract

The study investigates the effectiveness of a synthetic vitamin analog (vitamin K5) for the growth inhibition of a total of 14 bacterial pathogens, spoilage-inducing bacteria and three spoilage-inducing molds that were tested during this study. Bacterial growth inhibition by vitamin K5 and vitamin K5 combined with sodium chloride (NaCl) were tested by determining the Minimum Inhibitory Concentrations (MICs) using a broth microdilution method. Antifungal effects of vitamin K5 were determined by measuring the growth of three different spoilage molds on Malt agar plates containing different concentrations of vitamin K5. All bacterial strains assayed were inhibited by vitamin K5 in a range of 64-1,024 μg/ml. When vitamin K5 was combined with 3% NaCl, five out of the 14 bacterial strains assayed showed lower MICs than for vitamin K5 alone. When vitamin K5 was combined with 5% NaCl, nine of the 14 bacterial strains assayed displayed lower MICs than for vitamin K5 alone. With respect to inhibition of molds, 10 μg/ml vitamin K5 induced inhibitory effects against Aspergillus parasiticus NRRL 2999 and Penicillium expansum NRRL 6069, but not Aspergillus flavus NRRL 6540. In contrast, 30 or 50 μg/ml vitamin K5 showed inhibitory effects against the growth of all molds assayed; however, inhibitory effects against aflatoxin production by A. flavus NRRL 6540 were achieved only with 50 μg/ml. These data show that vitamin K5 is a useful antimicrobial agent that at low concentrations causes growth inhibition of a broad spectrum of bacterial pathogens and spoilage bacteria as well as certain molds.

Keywords

Vitamin K5 Quinone Antimicrobial Spoilage Food-borne pathogen Food preservative 

References

  1. American Society for Testing and Materials (ASTM). (1993). Standard practice for determining resistance of polymeric materials to fungi, designation G21-70. PA, USA: Philadelphia.Google Scholar
  2. Athanassiadis, C.-M., Caspar, J.-N., & Yang, H.-Y. (1956). Controlling secondary fermentation in wine with vitamin K5. Wines and Vines, 11, 47–50.Google Scholar
  3. Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1, 43–63.CrossRefGoogle Scholar
  4. Ceylan, E., & Fung, D.-Y.-C. (2000). Destruction of Yersinia enterocolitica by Lactobacillus sake and Pediococcus acidilactici during low-temperature fermentation of Turkish dry sausage (sucuk). Journal of Food Science, 65(5), 876–879.CrossRefGoogle Scholar
  5. Doyle, M.-P., & Cliver, D.-O. (1990). Yersinia enterocolitica. In D. O. Cliver (Ed.), Food-borne diseases (pp. 223–228). San Diego, CA, USA: Academic Press. Inc.Google Scholar
  6. Fente, C.-A., Jaimez Ordaz, J., Vazquez, B.-I., Franco, C.-M., & Cepeda, A. (2001). New additive for culture media for rapid identification of aflatoxin-producing Aspergillus strains. Applied and Environmental Microbiology, 67(10), 4858–4862.CrossRefGoogle Scholar
  7. Fitzgerald, D.-J., Stratford, M., & Narbad, A. (2003). Analysis of the inhibition of food spoilage yeasts by vanillin. International Journal of Food Microbiology, 86(1–2), 113–122.CrossRefGoogle Scholar
  8. Gill, A.-O., & Holley, R.-A. (2003). Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 °C. International Journal of Food Microbiology, 80(3), 251–259.CrossRefGoogle Scholar
  9. Helander, I.-M., von Wright, A., & Mattila-Sandholm, T.-M. (1997). Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria. Trends in Food Science and Technology, 8(5), 146–150.CrossRefGoogle Scholar
  10. Hitomi, M., Nonomura, T., Yokoyama, F., Yoshiji, H., Ogama, M., Nakai, S., et al. (2005). In vitro and in vivo antitumor effects of vitamin K5 on hepatocellular carcinoma. International Journal of Oncology, 26(5), 1337–1344.Google Scholar
  11. McLay, J.-C., Kennedy, M.-J., ÓRourke, A.-L., Elliot, R.-M., & Simmonds, R.-S. (2002). Inhibition of bacterial foodborne pathogens by the lactoperoxidase system in combination with monolaurin. International Journal of Food Microbiology, 73(1), 1–9.CrossRefGoogle Scholar
  12. Merrifield, L.-S., & Yang, H.-Y. (1965a). Factors affecting the antimicrobial activity of vitamin K5. Applied Microbiology, 13(5), 766–770.Google Scholar
  13. Merrifield, L.-S., & Yang, H.-Y. (1965b). Vitamin K5 as a fungistatic agent. Applied Microbiology, 13(5), 660–662.Google Scholar
  14. Murata, A., Sakai, S., Oda, K., Nakatsumi, K., & Kato, F. (1983). Effect of vitamins other than vitamin C on viruses: virus-inactivating activity of vitamin K5. Journal of Nutritional Science and Vitaminology, 29(6), 721–724.Google Scholar
  15. National Committee for Clinical Laboratory Standards (NCCLS). (2003). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard (6th ed., Vol. M7-A6). Wayne, PA, USA: NCCLS.Google Scholar
  16. Norton, N., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1, 2–34.CrossRefGoogle Scholar
  17. Oms-Oliu, G., Matín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed field treatments for food preservation. A review. Food and Bioprocess Technology, 3, 13–23.CrossRefGoogle Scholar
  18. Ouattara, B., Simard, R.-E., Holley, R.-A., Piette, G.-J.-P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37(2–3), 155–162.CrossRefGoogle Scholar
  19. Pratt, R., Dufrenoy, J., Sah, P.-O.-T., Oneto, J., Brodie, D.-C., Riegleman, S., et al. (1950). Vitamin K5 as an antimicrobial medicament and preservative. Journal of American Pharmaceutical Association-Scientific Edition, 39(3), 127–134.CrossRefGoogle Scholar
  20. Pratt, R., Sah, P.-P.-T., Dufrenoy, J., & Pickering, V.-L. (1948). Vitamin K5 as an inhibitor of the growth of fungi and of fermentations by yeast. Proceedings of the National Academy of Sciences of the United States of America, 34, 323–328.CrossRefGoogle Scholar
  21. Samelis, J., Kakouri, A., & Rementzis, J. (2000). The spoilage microflora of cured, cooked turkey breast prepared commercially with or without smoking. International Journal of Food Microbiology, 56(2–3), 133–143.CrossRefGoogle Scholar
  22. Shartzman, G. (1948). Antibacterial properties of 4-amino-2-methyl napthol hydrochloride (synkamin). Proceedings of the Society for Experimental Biology and Medicine, 67, 376–378.Google Scholar
  23. Sher, A. (2009). Antimicrobial activity of natural products from medicinal plants. Gomal Journal of Medical Sciences, 7(1), 72–78.Google Scholar
  24. Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kokkini, S., Lanaras, T., & Arsenakis, M. (1996). Antimicrobial and cytotoxic activity of Origanum essential oils. Journal of Agricultural and Food Chemistry, 44(5), 1202–1205.CrossRefGoogle Scholar
  25. Suarez Lepe, J.-A., & Inigo Leal, B. (2003). Microbiología enológica. Fundamentos de vinificación (3rd ed.). S. A, Madrid, Spain: Ediciones Mundi-Prensa.Google Scholar
  26. Trivellato, E. (1957). Action of vitamin K5 on Aspergillus niger. Giornale di Malattie Infettive e Parassitarie, 9, 326–327.Google Scholar
  27. Ultee, A., Kets, E.-P.-W., & Smid, E.-J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 65(10), 4606–4610.Google Scholar
  28. Ultee, A., Slump, R.-A., Steging, G., & Smid, E.-J. (2000). Antimicrobial activity of Carvacrol toword Bacillus cereus on rice. Journal of Food Protection, 63(5), 620–624.Google Scholar
  29. Vazquez, B.-I., Fente, C., Franco, C.-M., Vázquez, M.-J., & Cepeda, A. (2001). Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. International Journal of Food Microbiology, 67(1–2), 157–163.CrossRefGoogle Scholar
  30. Weng, Y.-W., & Hotchkiss, J.-H. (1991). Headspace gas-composition and chitin content as measures of Rhizopus stolonifer growth. Journal of Food Science, 56(1), 274–275.CrossRefGoogle Scholar
  31. Yang, H.-Y., Steele, W.-F., Stein, R.-W., Cain, R.-F., & Sinnhuber, R.-O. (1958). Vitamin K5 as a food preservative. Food Technology, 12(10), 501–505.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Jose M. Miranda
    • 1
    • 3
    Email author
  • Fabiao Jorge
    • 1
  • Lucas Dominguez
    • 2
  • Alberto Cepeda
    • 1
  • Carlos M. Franco
    • 1
  1. 1.Laboratorio de Higiene, Inspección y Control de los Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Facultad de VeterinariaUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Dpto. de Patología Animal I (Sanidad Animal), Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain
  3. 3.Laboratorio de Higiene Inspección y Control de Alimentos, Facultad de VeterinariaLugoSpain

Personalised recommendations