Food and Bioprocess Technology

, Volume 4, Issue 4, pp 487–504

Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables

  • Sergio Cubero
  • Nuria Aleixos
  • Enrique Moltó
  • Juan Gómez-Sanchis
  • Jose Blasco
Review Paper

Abstract

Artificial vision systems are powerful tools for the automatic inspection of fruits and vegetables. Typical target applications of such systems include grading, quality estimation from external parameters or internal features, monitoring of fruit processes during storage or evaluation of experimental treatments. The capabilities of an artificial vision system go beyond the limited human capacity to evaluate long-term processes objectively or to appreciate events that take place outside the visible electromagnetic spectrum. Use of the ultraviolet or near-infrared spectra makes it possible to explore defects or features that the human eye is unable to see. Hyperspectral systems provide information about individual components or damage that can be perceived only at particular wavelengths and can be used as a tool to develop new computer vision systems adapted to particular objectives. In-line grading systems allow huge amounts of fruit or vegetables to be inspected individually and provide statistics about the batch. In general, artificial systems not only substitute human inspection but also improve on its capabilities. This work presents the latest developments in the application of this technology to the inspection of the internal and external quality of fruits and vegetables.

Keywords

Computer vision Image analysis Fruits and vegetables Automatic inspection Internal quality Hyperspectral In-line grading 

Nomenclature

ANN

Artificial neural networks

ANOVA

Analysis of variance

BMP

Bitmap image format

CA

Correlation analysis

CART

Classification and regression trees

CCD

Charge-coupled device

CMOS

Complementary metal oxide semiconductor

CNN

Competitive neural networks

CT

Computed tomography

DA

Discriminant analysis

GALDA

Genetic algorithm based on LDA

HSI

Hue, saturation, intensity colour space

HSV

Hue, saturation, value colour space

JPG

Joint Photographic Experts Group image format

k-NN

k-nearest neighbour

L*a*b*

CIE-Lab colour space

LDA

Linear discriminant analysis

Luv

CIE-Luv colour space

MI

Mutual information

MIA

Multivariate image analysis

MRI

Magnetic resonance imaging

NIR

Near-infrared

PCA

Principal component analysis

PCI

Peripheral component interconnect

PLS

Partial least square

RGB

Red, green, blue colour space

sRGB

Standard RGB

SSC

Soluble solids content

SVM

Support vector machine

SW

Stepwise multivariate analysis

TA

Titratable acid

TIF

Tagged image file format

USB

Universal serial bus

UV

Ultraviolet

UVFL

Ultraviolet-induced fluorescence

XYZ

XYZ colour space

References

  1. Abdullah, M. Z., Mohamad-Saleh, J., Fathinul-Syahir, A. S., & Mohd-Azemi, B. M. N. (2006). Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. Journal of Food Engineering, 76, 506–523.CrossRefGoogle Scholar
  2. Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.CrossRefGoogle Scholar
  3. Al-Mallahi, A., Kataoka, T., Okamoto, H., & Shibata, Y. (2010). Detection of potato tubers using an ultraviolet imaging-based machine vision system. Biosystems Engineering, 105(2), 257–265.CrossRefGoogle Scholar
  4. Antonucci, F., Costa, C., Pallottino, F., Paglia, G., Rimatori, V., De Giorgio, D., et al. (2010). Quantitative method for shape description of almond cultivars (Prunus amygdalus Batsch). Food and Bioprocess Technology. doi:10.1007/s11947-010-0389-2, in-press.Google Scholar
  5. Ariana D., Guyer DE, & Shrestha, B. (2006a). Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture, 50, 148–161.Google Scholar
  6. Ariana, D. P., Lu, R., & Guyer, D. E. (2006b). Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Computers and Electronics in Agriculture, 53, 60–70.CrossRefGoogle Scholar
  7. Baranowski, P., Lipecki, J., Mazurek, W., & Walczak, R. T. (2008). Detection of watercore in ‘Gloster’ apples using thermography. Postharvest Biology and Technology, 47, 358–366.CrossRefGoogle Scholar
  8. Baranyai, L., & Zude, M. (2009). Analysis of laser light propagation in kiwifruit using backscattering imaging and Monte Carlo simulation. Computers and Electronics in Agriculture, 69, 33–39.CrossRefGoogle Scholar
  9. Barnes, M., Duckett, T., Cielniak, G., Stroud, G., & Harper, G. (2010). Visual detection of blemishes in potatoes using minimalist boosted classifiers. Journal of Food Engineering, 98(3), 339–346.CrossRefGoogle Scholar
  10. Barreiro, P., Zheng, C., Sun, D.-W., Hernández-Sánchez, N., Pérez-Sánchez, J. M., & Ruiz-Cabello, J. (2008). Non-destructive seed detection in mandarins: Comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biology and Technology, 47, 189–198.CrossRefGoogle Scholar
  11. Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. (2004). Acousto-optic tunable filters: Fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67–87.CrossRefGoogle Scholar
  12. Bennedsen, B. S., & Peterson, D. L. (2005). Performance of a system for apple surface defect identification in near-infrared images. Biosystems Engineering, 90(4), 419–431.CrossRefGoogle Scholar
  13. Bennedsen, B. S., Peterson, D. L., & Tabb, A. (2005). Identifying defects in images of rotating apples. Computers and Electronics in Agriculture, 48, 92–102.CrossRefGoogle Scholar
  14. Blasco, J., Aleixos, N., & Moltó, E. (2003). Machine vision system for automatic quality grading of fruit. Biosystems Engineering, 85(4), 415–423.CrossRefGoogle Scholar
  15. Blasco, J., Aleixos, N., & Moltó, E. (2007a). Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering, 81, 535–543.CrossRefGoogle Scholar
  16. Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007b). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393.CrossRefGoogle Scholar
  17. Blasco, J., Aleixos, N., Cubero, S., Gómez-Sanchis, J., & Moltó, E. (2009a). Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features. Computers and Electronics in Agriculture, 66, 1–8.CrossRefGoogle Scholar
  18. Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009b). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103, 137–145.CrossRefGoogle Scholar
  19. Blasco, J., Cubero, S., Gómez-Sanchis, J., Mira, P., & Moltó, E. (2009c). Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. Journal of Food Engineering, 90, 27–34.CrossRefGoogle Scholar
  20. Bulanon, D. M., Burks, T. F., & Alchanatis, V. (2009). Image fusion of visible and thermal images for fruit detection. Biosystems Engineering, 103(1), 12–22.CrossRefGoogle Scholar
  21. Costa, C., Menesatti, P., Paglia, G., Pallottino, F., Aguzzi, J., Rimatori, V., et al. (2009). Quantitative evaluation of Tarocco sweet orange fruit shape using optoelectronic elliptic Fourier based analysis. Postharvest Biology and Technology, 54(1), 38–47.CrossRefGoogle Scholar
  22. Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: A review. Journal of Food Engineering, 72, 39–55.CrossRefGoogle Scholar
  23. Du, C.-J., & Sun, D.-W. (2009). Retrospective shading correlation of confocal laser scanning microscopy beef images for three-dimensional visualization. Food and Bioprocess Technology, 2, 167–176.CrossRefGoogle Scholar
  24. ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81, 98–107.CrossRefGoogle Scholar
  25. ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT – Food Science and Technology, 41, 337–345.CrossRefGoogle Scholar
  26. ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52, 1–8.CrossRefGoogle Scholar
  27. Evans, M. D., Thai, C. N., & Grant, J. C. (1998). Development of a spectral imaging system based on a liquid crystal tunable filter. Transactions of the ASABE, 41(6), 1845–1852.Google Scholar
  28. Fathi, M., Mohebbi, M., & Ali Razavi, S. M. (2009). Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology. doi:10.1007/s11947-009-0222-y, in-press.Google Scholar
  29. Fernández, L., Castillero, C., & Aguilera, J. M. (2005). An application of image analysis to dehydration of apple discs. Journal of Food Engineering, 67, 185–193.CrossRefGoogle Scholar
  30. Gardner, J. L. (2007). Comparison of calibration methods for tristimulus colorimeters. Journal of Research of the National Institute of Standards and Technology, 112, 129–138.Google Scholar
  31. Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008a). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.CrossRefGoogle Scholar
  32. Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008b). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering, 85(2), 191–200.CrossRefGoogle Scholar
  33. Gowen, A. A., Taghizadeh, M., & O'Donnell, C. P. (2009). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Journal of Food Engineering, 93, 7–12.CrossRefGoogle Scholar
  34. Hernández-Sánchez, N., Hills, B., Barreiro, P., & Marigheto, N. (2007). A NMR study on internal browning in pears. Postharvest Biology and Technology, 44, 260–270.CrossRefGoogle Scholar
  35. Hill, B. (1998). Magnetic resonance imaging in food science. New York: Wiley.Google Scholar
  36. Hoffman, G. (2010). CIE colour space. Available at: http://www.fho-emden.de/~hoffmann/ciexyz29082000.pdf. Accessed June 2010.
  37. Hongchen, W., Yi, X., Lai, J., & Li, Y. (2005). Fabricating microbolometer array on unplanar readout integrated circuit. International Journal of Infrared and Millimeter Waves, 26(5), 751–762.CrossRefGoogle Scholar
  38. HunterLab (2008) Application note: Hunter L,a,b versus CIE 1976 L*a*b*. Available at: http://www.hunterlab.com/appnotes/an02_01.pdf. Accessed June 2010.
  39. Jarimopas, B., & Jaisin, N. (2008). An experimental machine vision system for sorting sweet tamarind. Journal of Food Engineering, 89, 291–297.CrossRefGoogle Scholar
  40. Jiménez-Cuesta, M., Cuquerella, J., & Martínez-Jávega, J. M. (1981). Determination of a color index for citrus fruit degreening. Proceedings of the International Society of Citriculture, 2, 750–753.Google Scholar
  41. Kang, S. P., East, A. R., & Trujillo, F. J. (2008). Colour vision system evaluation of bicolour fruit: A case study with ‘B74’ mango. Postharvest Biology and Technology, 49, 77–85.CrossRefGoogle Scholar
  42. Karimi, Y., Maftoonazad, N., Ramaswamy, H. S., Prasher, S. O., & Marcotte, M. (2009). Application of hyperspectral technique for color classification avocados subjected to different treatments. Food and Bioprocess Technology. doi:10.1007/s11947-009-0292-x.Google Scholar
  43. Kim, M. S., Chen, Y. R., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASABE, 44(3), 721–729.Google Scholar
  44. Koc, A. B. (2007). Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biology and Technology, 45, 366–371.CrossRefGoogle Scholar
  45. Leemans, V., & Destain, M.-F. (2004). A real-time grading method of apples based on features extracted from defects. Journal of Food Engineering, 6, 83–89.CrossRefGoogle Scholar
  46. Lefcout, A. M., & Kim, M. S. (2006). Technique for normalizing intensity histograms of images when the approximate size of the target is known: Detection of feces on apples using fluorescence imaging. Computers and Electronics in Agriculture, 50, 135–147.CrossRefGoogle Scholar
  47. Lefcout, A. M., Kim, M. S., Chen, Y.-R., & Kang, B. (2006). Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples. Computers and Electronics in Agriculture, 54, 22–35.CrossRefGoogle Scholar
  48. León, K., Domingo, M., Pedreschi, F., & León, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Research International, 39, 1084–1091.CrossRefGoogle Scholar
  49. Liming, X., & Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture, 71(S1), S32–S39.CrossRefGoogle Scholar
  50. Lleó, L., Barreiro, P., Ruiz-Altisent, M., & Herrero, A. (2009). Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229–235.CrossRefGoogle Scholar
  51. López-García, F., Andreu-García, A., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197.CrossRefGoogle Scholar
  52. Martynenko, A. I. (2008). Porosity evaluation of ginseng roots from real-time imaging and mass measurements. Food and Bioprocess Technology. doi:10.1007/s11947-008-0158-7.Google Scholar
  53. Mendoza, F., Dejmek, P., & Aguilera, J. M. (2006). Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41, 285–295.CrossRefGoogle Scholar
  54. Menesatti, P., Costa, C., Paglia, G., Pallottino, F., D'Andrea, S., Rimatori, V., et al. (2008). Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystems Engineering, 101, 417–424.CrossRefGoogle Scholar
  55. Menesatti, P., Zanella, A., D'Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2, 308–314.CrossRefGoogle Scholar
  56. Milczarek, R. R., Saltveit, M. E., Garvey, T. C., & McCarthy, M. J. (2009). Assessment of tomato pericarp mechanical damage using multivariate analysis of magnetic resonance images. Postharvest Biology and Technology, 52, 189–195.CrossRefGoogle Scholar
  57. Nicolaï, B. M., Lötze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40, 1–6.CrossRefGoogle Scholar
  58. Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43, 193–201.CrossRefGoogle Scholar
  59. Obenland, D., & Neipp, P. (2005). Chlorophyll fluorescence imaging allows early detection and localization of lemon rind injury following hot water treatment. Hortscience, 40(6), 1821–1823.Google Scholar
  60. Okamoto, H., & Lee, W. S. (2009). Green citrus detection using hyperspectral imaging. Computers and Electronics in Agriculture, 66(2), 201–208.CrossRefGoogle Scholar
  61. Pallottino, F., Menesatti, P., Costa, C., Paglia, G., De Salvador, F. R., & Lolletti, D. (2010). Image analysis techniques for automated hazelnut peeling determination. Food and Bioprocess Technology, 3(1), 155–159.CrossRefGoogle Scholar
  62. Paulus, I., De Busscher, R., & Schrevens, E. (1997). Use of image analysis to investigate human quality classification of apples. Journal of Agricultural Engineering Research, 68, 341–353.CrossRefGoogle Scholar
  63. Pedreschi, F., León, J., Mery, D., & Moyano, P. (2006). Development of a computer vision system to measure the color of potato chips. Food Research International, 39, 1092–1098.CrossRefGoogle Scholar
  64. Peng, Y., & Lu, R. (2008). Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 48, 52–62.CrossRefGoogle Scholar
  65. Peterson, C. (2001). How it works: The charged-coupled device or CCD. Journal of young investigators. Available at: http://www.jyi.org/volumes/volume3/issue1/features/peterson.html. Accessed June 2010.
  66. Polder, G., van der Heijden, G. W. A. M., Keizer, L. C. P., & Young, I. T. (2003). Calibration and characterization of spectral imaging systems. Journal of Near Infrared Spectroscopy, 11, 193–210.CrossRefGoogle Scholar
  67. Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminant analysis. Computers and Electronics in Agriculture, 52, 49–59.CrossRefGoogle Scholar
  68. Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191.CrossRefGoogle Scholar
  69. Qing, Z., Ji, B., & Zude, M. (2007). Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. Journal of Food Engineering, 82, 58–67.CrossRefGoogle Scholar
  70. Qing, Z., Ji, B., & Zude, M. (2008). Non-destructive analyses of apple quality parameters by means of laser-induced light backscattering imaging. Postharvest Biology and Technology, 48, 215–222.Google Scholar
  71. Quevedo, R., & Aguilera. (2010). Color computer vision and stereoscopy for estimating firmness in the salmon (Salmon salar) fillets. Food and Bioprocess Technology, 3(4), 561–567.CrossRefGoogle Scholar
  72. Quevedo, R., Aguilera, J. M., & Pedreschi, F. (2008a). Color of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology. doi:10.1007/s11947-008-0106-6.Google Scholar
  73. Quevedo, R., Mendoza, F., Aguilera, J. M., Chanona, J., & Gutiérrez-López, G. (2008b). Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. Journal of Food Engineering, 84, 509–515.CrossRefGoogle Scholar
  74. Reese, D., Lefcourt, A. M., Kim, M. S., & Lo, Y. M. (2010). Using parabolic mirrors for complete imaging of apple surfaces. Bioresource Technology, 100, 4499–4506.CrossRefGoogle Scholar
  75. Riquelme, M. T., Barreiro, P., Ruiz-Altisent, M., & Valero, C. (2008). Olive classification according to external damage using image analysis. Journal of Food Engineering, 87, 371–379.CrossRefGoogle Scholar
  76. Sadrnia, H., Rajabipour, A., Jafary, A., Javadi, A., & Mostofi, Y. (2007). Classification and analysis of fruit shapes in long type watermelon using image processing. International Journal of Agriculture and Biology, 1, 68–70.Google Scholar
  77. Safren, O., Alchanatis, V., Ostrovsky, V., & Levi, O. (2007). Detection of green apples in hyperspectral images of apple-tree foliage using machine vision. Transactions of the ASABE, 50(6), 2303–2313.Google Scholar
  78. Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48, 341–346.CrossRefGoogle Scholar
  79. Stokes, M., Anderson, M., Chandrasekar, S., & Motta, R. (1996). A standard default color space for the internet: sRGB. Available at: http://www.color.org/sRGB.xalter. Accessed June 2010.
  80. Stratis, D. S., Eland, K. L., Carter, J. C., Tomlinson, S. J., & Angel, S. M. (2001). Comparison of acousto-optic and liquid crystal tunable filters for laser-induced breakdown spectroscopy. Applied Spectroscopy, 55, 999–1004.CrossRefGoogle Scholar
  81. Sun, D.-W. (Ed.). (2007). Computer vision technology for food quality evaluation. London: Academic.Google Scholar
  82. Sun, D.-W. (Ed.). (2010). Hyperspectral imaging for food quality analysis and control. London: Academic.Google Scholar
  83. Throop, J. A., Aneshansley, D. J., Anger, W. C., & Peterson, D. L. (2005). Quality evaluation of apples based on surface defects: Development of an automated inspection system. Postharvest Biology and Technology, 36, 281–290.Google Scholar
  84. Unay, D., & Gosselin, B. (2006). Automatic defect segmentation of ‘Jonagold’ apples on multi-spectral images: A comparative study. Postharvest Biology and Technology, 42, 271–279.CrossRefGoogle Scholar
  85. Unay, D., & Gosselin, B. (2007). Stem and calyx recognition on ‘Jonagold’ apples by pattern recognition. Journal of Food Engineering, 78, 597–605.CrossRefGoogle Scholar
  86. Vadivambal, R., & Jayas, D. S. (1010). Applications of thermal imaging in agriculture and food industry—a review. Food and Bioprocess Technology. doi:10.1007/s11947-010-0333-5.Google Scholar
  87. Xiaobo, Z., Jiewen, Z., & Yanxiao, L. (2007). Apple color grading based on organization feature parameters. Pattern Recognition Letters, 28, 2046–2053.CrossRefGoogle Scholar
  88. Xiao-bo, Z., Jie-wen, Z., Yanxiao, L., & Holmes, M. (2010). In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture, 70, 129–134.CrossRefGoogle Scholar
  89. Xing, J., Jancsók, P., & De Baerdemaeker, J. (2007). Stem-end/calyx identification on apples using contour analysis in multispectral images. Biosystems Engineering, 96(2), 231–237.CrossRefGoogle Scholar
  90. Xul, Q., Zou, X., & Zhao, J. (2009). On-line detection of defects on fruit by Machinevision systems based on three-color-cameras systems. Computer and Computing Technologies in Agriculture II, 295, 2231–2238.Google Scholar
  91. Zhao, X., Burks, T. F., Qin, J., & Ritenour, M. A. (2009). Digital microscopic imaging for citrus peel disease classification using color texture features. Applied Engineering in Agriculture, 25(5), 769–776.Google Scholar
  92. Zude, M. (Ed.). (2008). Optical monitoring of fresh and processed agricultural crops. Boca Raton: CRC Press.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Sergio Cubero
    • 1
  • Nuria Aleixos
    • 2
  • Enrique Moltó
    • 1
  • Juan Gómez-Sanchis
    • 3
  • Jose Blasco
    • 1
  1. 1.Centro de AgroingenieríaInstituto Valenciano de Investigaciones AgrariasMoncadaSpain
  2. 2.Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser HumanoUniversidad Politécnica de ValenciaValenciaSpain
  3. 3.Intelligent Data Analysis Laboratory (IDAL), Electronic Engineering DepartmentUniversitat de ValènciaBurjassot (Valencia)Spain

Personalised recommendations