Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 3, pp 1068–1076 | Cite as

Enzymatic Synthesis of Ascorbyl Palmitate in Organic Solvents: Process Optimization and Kinetic Evaluation

  • Lindomar A. Lerin
  • Aline Richetti
  • Rogério Dallago
  • Helen Treichel
  • Marcio A. Mazutti
  • J. Vladimir Oliveira
  • Octávio A. C. Antunes
  • Enrique G. Oestreicher
  • Débora de Oliveira
Original Paper

Abstract

This work is focused on the optimization of reaction parameters for the synthesis of ascorbyl palmitate catalyzed by Candida antarctica lipase in different organic solvents. The sequential strategy of experimental designs proved to be useful in maximizing the conditions for product conversion in tert-butanol system using Novozym 435 as catalyst. The optimum production were achieved at ascorbic acid to palmitic acid mole ratio of 1:9, stirring rate of 150 rpm, 70 °C, enzyme concentration of 5 wt.% at 17 h of reaction, resulting in an ascorbyl palmitate conversion of about 67%. Reaction kinetics for ascorbyl palmitate production showed that very satisfactory reaction conversions (∼56%) could be achieved in short reaction times (6 h). The kinetic empirical model proposed showed ability to satisfactory represents and predict the experimental data.

Keywords

Biocatalysis Neural network Kinetics Lipase Ascorbyl palmitate Experimental design 

Notes

Acknowledgement

The authors thank CNPq and CAPES for the financial support and scholarships.

References

  1. Bradoo, S., Saxena, R. K., & Gupta, R. (1999). High yields of ascorbyl palmitate by thermostable lipase-mediated esterification. Journal of the American Oil Chemistry Society, 76, 1291–1295.CrossRefGoogle Scholar
  2. Burham, H., Rasheed, R. A. G. A., Noor, N. M., Badruddin, S., & Sidek, H. (2009). Enzymatic synthesis of palm-based ascorbyl esters. Journal of Molecular Catalysis. B, Enzymatic, 58, 153–157.CrossRefGoogle Scholar
  3. Chang, S. W., Yang, C. J., Chen, F. Y., Akoh, C. C., & Shieh, C. J. (2009). Optimized synthesis of lipase-catalyzed L-ascorbyl laurate by Novozym® 435. Journal of Molecular Catalysis. B, Enzymatic, 56, 7–12.CrossRefGoogle Scholar
  4. Chen, J.-P. (1996). Production of ethyl butyrate using gel-entrapped Candida cylindracea lipase. Journal of Fermentation and Bioengineering, 82, 404–409.CrossRefGoogle Scholar
  5. Cui, Y.-M., Wei, D.-Z., & Yu, J.-T. (1997). Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnology Letters, 19, 865–868.CrossRefGoogle Scholar
  6. de Pinedo, A. T., Peñalver, P., Pérez-Victoria, I., Rondon, D., & Morales, J. C. (2007). Synthesis of new phenolic fatty acid esters and their evaluation as lipophilic antioxidants in an oil matrix. Food Chemistry, 105, 657–665.CrossRefGoogle Scholar
  7. Hsieh, H., Nair, G. R., & Wu, W. (2006). Production of ascorbyl palmitate by surfactant-coated lipase in organic media. Journal of Agricultural and Food Chemistry, 54, 5777–5781.CrossRefGoogle Scholar
  8. Humeau, C., Girardin, M., Coulon, D., & Miclo, A. (1995). Synthesis of 6-O-palmitoyl L-ascorbic acid catalyzed by Candida antarctica lipase. Biotechnology Letters, 17, 1091–1094.CrossRefGoogle Scholar
  9. Humeau, C., Girardin, M., Rovel, B., & Miclo, A. (1998). Enzymatic synthesis of fatty acid ascorbyl esters. Journal of Molecular Catalysis. B, Enzymatic, 5, 19–23.CrossRefGoogle Scholar
  10. Jing, H., Yap, M., Wong, P.Y.Y., Kitts, D.D. (2009). Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin maillard reaction products. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0279-7
  11. Karmee, S. K. (2009). Biocatalytic synthesis of ascorbyl esters and their biotechnological applications. Applied Microbiology and Biotechnology, 81, 1013–1022.CrossRefGoogle Scholar
  12. Karra-Châabouni, M., Ghamghi, H., Bezzine, S., Rekik, A., & Gargouri, Y. (2006). Production of flavour esters by immobilized Sthaphylococcus simulans lipase in a solvent-free system. Process Biochemistry, 41, 1692–1698.CrossRefGoogle Scholar
  13. Khiari, Z., Makris, D. P., & Kefalas, P. (2009). An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and Bioprocess Technology, 2, 337–343.CrossRefGoogle Scholar
  14. Kristensen, J. B., Xu, X., & Mu, H. (2005). Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis. Journal of Agricultural and Food Chemistry, 53, 7059–7064.CrossRefGoogle Scholar
  15. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30, 81–87.CrossRefGoogle Scholar
  16. Liu, X. Y., Guo, F. L., Liu, Y. C., & Liu, Z. L. (1996). Remarkable enhancement of antioxidant activity of vitamin C in an artificial bilayer by making it lipo-soluble. Chemistry and Physics of Lipids, 83, 39–43.CrossRefGoogle Scholar
  17. Lv, L.-X., Pan, Y., & Li, Y.-Q. (2007). Synthesis of ascorbyl benzoate in organic solvents and study of its antioxygenic and antimicrobial properties. Food Chemistry, 101, 1626–1632.CrossRefGoogle Scholar
  18. Mazutti, M. A., Corazza, M. L., Maugeri Filho, F., Rodrigues, M. I., Corazza, F. C., & Treichel, H. (2009). Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: experimental data and modeling. Bioprocess and Biosystems Engineering, 32, 85–89.CrossRefGoogle Scholar
  19. Montgomery, D. C. (1991). Design and analysis of experiments. New York: Wiley.Google Scholar
  20. Novo Nordisk. (1992). Characteristics of immobilized lipase in ester synthesis and effects of water and temperature in various reactions. Technical Report A-05948.Google Scholar
  21. Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006). Assessment of two immobilized lipases activity treated in compressed fluids. Journal of Supercritical Fluids, 38, 373–382.CrossRefGoogle Scholar
  22. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in FORTRAN. Cambridge: Cambridge University Press.Google Scholar
  23. Rodrigues, M. I., & Iemma, A. F. (2006). Planejamento de experimentos e otimização de processos. Campinas: Editora Casa do Pão.Google Scholar
  24. Song, Q.-X., & Wei, D.-Z. (2002). Study of vitamin C ester synthesis by immobilized lipase from Candida sp. Journal of Molecular Catalysis. B, Enzymatic, 18, 261–266.CrossRefGoogle Scholar
  25. Song, Q.-X., Wei, D.-Z., Zhou, W.-Y., Xu, W.-Q., & Yang, S.-L. (2004). Enzymatic synthesis and antioxidant properties of L-ascorbyl oleate and L-ascorbyl linoleate. Biotechnology Letters, 26, 1777–1780.CrossRefGoogle Scholar
  26. Song, Q.-X., Zhao, W. Q., Xu, W. Y., & Zhou, D. Z. (2006). Enzymatic synthesis of L-ascorbyl linoleate in organic media. Bioprocess and Biosystems Engineering, 28, 211–215.CrossRefGoogle Scholar
  27. Treichel, H., Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3, 182–196.CrossRefGoogle Scholar
  28. Viklund, F., Alander, J., & Hult, K. (2003). Antioxidant properties and enzymatic synthesis of ascorbyl fatty acid esters. Journal of the American Oil Chemistry Society, 80, 795–799.CrossRefGoogle Scholar
  29. Wescott, C. R., & Klibanov, A. M. (1993). Solvent variation inverts substrate specificity of an enzyme. Journal of the American Oil Chemistry Society, 115, 1629–1631.Google Scholar
  30. Yan, Y., Bornscheuer, U. T., & Schmid, R. D. (1999). Lipase-catalyzed synthesis of vitamin C fatty acid esters. Biotechnology Letter, 21, 1051–1054.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Lindomar A. Lerin
    • 1
  • Aline Richetti
    • 2
  • Rogério Dallago
    • 2
  • Helen Treichel
    • 2
  • Marcio A. Mazutti
    • 2
  • J. Vladimir Oliveira
    • 2
  • Octávio A. C. Antunes
    • 1
  • Enrique G. Oestreicher
    • 1
  • Débora de Oliveira
    • 2
  1. 1.Instituto de Química-IQ/UFRJRio de JaneiroBrazil
  2. 2.Universidade Regional Integrada do Alto Uruguai e das MissõesURI - Campus de ErechimErechimBrazil

Personalised recommendations