Food and Bioprocess Technology

, Volume 4, Issue 3, pp 327–339 | Cite as

Post-harvest Processing of Banana: Opportunities and Challenges

  • Debabandya Mohapatra
  • Sabyasachi Mishra
  • Chandra Bhan Singh
  • Digvir Singh JayasEmail author
Review Paper


Banana has a special place in the daily diet of millions of people around the world for sustenance and nutrient enrichment. Some of the popular food uses of banana are chips, raw ripened fruit, cooked green banana, fermented and unfermented beverages, juice, puree, dried flour for bakery and infant formula food. Banana is also used as a starch source for various chemicals and packaging materials. The storability and functional properties of these products can be altered by the application of various innovative food processing technologies. This review article focuses on different banana products, their potential for non-conventional uses and associated prospective novel processing techniques for value addition and preservation.


Banana Processing Juice Chips Puree Powder 



The authors thank the Canada Research Chairs program for partial funding of this study. They also thank Anand Agricultural University and Central Agricultural University, India for providing facilities to prepare this review article.


  1. Abonyi, B. I., Feng, H., Tang, J., Edwards, C. G., Chew, B. P., Mattinson, D. S., et al. (2002). Quality retention in strawberry and carrot purees dried with Refractance Window™ system. Journal of Food Science, 67(3), 1051–1056.CrossRefGoogle Scholar
  2. Adeniji, T. A. (2005). The effect of fluorescent light and packaging materials on the shelf life of plantain and banana chips during storage. African Journal of Applied Zoology and Environmental Biology, 7, 19–22.Google Scholar
  3. Adeniji, T. A., Sanni, L. O., Barimalaa, I. S., & Hart, A. D. (2006). Determination of micronutrients and colour variability among new plantain and banana hybrids flour. World Journal of Chemistry, 1(1), 23–27.Google Scholar
  4. Adeniji, T. A., Sanni, L. O., Barimalaa, I. S., & Hart, A. D. (2007). Nutritional and anti-nutritional composition of flour made from plantain and banana hybrid pulp and peel mixture. Nigerian Food Journal, 25(2), 68–76.Google Scholar
  5. Ade-Omowaye, B. I. O., Angersbach, A., Taiwoy, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science and Technology, 12, 285–295.CrossRefGoogle Scholar
  6. Ade-Omowaye, B. I. O., Rastogi, N. K., Angersbach, A., & Knorr, D. (2002). Osmotic dehydration of bell peppers: Influence of high intensity electric field pulses and elevated temperature treatment. Journal of Food Engineering, 54(1), 35–43.CrossRefGoogle Scholar
  7. Adeyemi, O. S., & Oladiji, A. T. (2009). Compositional changes in banana (Musa ssp.) fruits during ripening. African Journal of Biotechnology, 8(5), 858–859.Google Scholar
  8. Adisa, V. A., & Okey, E. N. (1987). Carbohydrate and protein composition of banana pulp and peel as influenced by ripening and mold contamination. Food Chemistry, 25, 85–91.CrossRefGoogle Scholar
  9. Agunbiade, S. O., Olanlokun, J. O., & Olaofe, O. A. (2006). Quality of chips produced from rehydrated dehydrated plantain and banana. Pakistan Journal of Nutrition, 5(5), 471–473.CrossRefGoogle Scholar
  10. Akubor, P. I., Obio, S. O., Nwadomere, K. A., & Obiomah, E. (2003). Production and quality evaluation of banana wine. Plant Foods for Human Nutrition, 58, 1–6.Google Scholar
  11. Allali, H., Marchal, L., & Vorobiev, E. (2010). Blanching of strawberries by ohmic heating: Effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology, 3(3), 406–414. doi: 10.1007/s11947-008-0115-5.CrossRefGoogle Scholar
  12. Alpas, H., & Bozoglu, F. (2003). Efficiency of high pressure treatment for destruction of Listeria monocytogenes in fruit juices. FEMS Immunology and Medical Microbiology, 35(3), 269–273.CrossRefGoogle Scholar
  13. Alvarez, R. A. Fernandez, L., Ilyin, R., Mejia, I., Murillo, J. T., Nunez, L. G. B., et al. (2007). Device for separating banana pulp from the peel. United States Patent Application 20070122533.Google Scholar
  14. Areas, J. A. G., & Lajolo, F. M. (1981). Starch transformation during banana ripening: The phosphorylase and phosphatase behavior in Musa acuminata. Journal of Food Biochemistry, 5, 19–26.CrossRefGoogle Scholar
  15. Aurore, G., Parfait, B., & Fahrasmane, L. (2009). Bananas, raw materials for making processed food products. Trends in Food Science and technology, 20, 78–91.CrossRefGoogle Scholar
  16. Barre, A., Peumans, W. J., Menu-Bouaouiche, L., VanDamme, E. J. M., May, G. D., Herrera, A. F., et al. (2000). Purification and structural analysis of an abundant thaumatin like protein from ripe banana fruit. Planta, 211, 791–799.CrossRefGoogle Scholar
  17. Bhaskaracharya, R. K., Kentish, S., & Ashokkumar, M. (2009). Selected applications of ultrasonics in food processing. Food Engineering Reviews, 1, 31–49.CrossRefGoogle Scholar
  18. Blankenship, S. M., & Dole, J. M. (2003). 1-Methylcyclopropene—A review. Postharvest Biology and Technology, 28(1), 1–25.CrossRefGoogle Scholar
  19. Boudhrioua, N., Giampaoli, P., & Bonazzi, C. (2003). Changes in aromatic components of banana during ripening and air-drying. Lebensmittel-Wissenschaft und-Technologie, 36(6), 633–642.CrossRefGoogle Scholar
  20. Cañumir, J. A., Celis, J. E., Bruijn, J. D., & Vidal, L. V. (2002). Pasteurisation of apple juice by using microwaves. Lebensmittel-Wissenschaft und-Technologie, 35(5), 389–392.CrossRefGoogle Scholar
  21. Carvalho, G. B. M., Silva, D. P., Bento, C. V., Vicente, A. A., Teixeira, J. A., Felipe, M. G. A., et al. (2009). Banana as adjunct in beer production: Applicability and performance of fermentative parameters. Applied Biochemistry and Biotechnology, 155, 356–365.CrossRefGoogle Scholar
  22. Casimir, D. J., & Jayaraman, K. S. (1971). Banana drink, a new canned product. Food Research and Quality, 31, 24–29.Google Scholar
  23. Castro, I., Macedo, B., Teixeira, J. A., & Vicente, A. A. (2004). The effect of electric field on important food-processing enzymes: Comparison of inactivation kinetics under conventional and ohmic heating. Journal of Food Science, 69(9), C696–C701.CrossRefGoogle Scholar
  24. Chan-Blanco, Y., Bonilla-Leiva, A. R., & Velazquez, A. C. (2003). Using banana to generate lactic acid through batch process fermentation. Applied Microbiology and Biotechnology, 63, 147–152.CrossRefGoogle Scholar
  25. Charles-Rodríguez, A. V., Nevárez-Moorillón, G. V., Zhang, Q. H., & Ortega-Rivas, E. (2007). Comparison of thermal processing and pulsed electric fields treatment in pasteurization of apple juice. Food and Bioproducts Processing, 85(2), 93–97.CrossRefGoogle Scholar
  26. Cheirsilp, B., & Umsakul, K. (2008). Processing of banana-based wine product using pectinase and alpha-amylase. Journal of Food Process Engineering, 31(1), 78–90.CrossRefGoogle Scholar
  27. Clarke, P. T. (2004). Refractance Window™Down under. In: Proceedings of the 14th International Drying Symposium (IDS 2004), São Paulo, Brazil, B, 813–820.Google Scholar
  28. Clement, C. K., Sankat, K., & Castaigne, F. (2004). Foaming and drying behaviour of ripe bananas. Lebensmittel-Wissenschaft und-Technologie, 37(5), 517–525.CrossRefGoogle Scholar
  29. Clements, M. L., Levine, M. M., Black, R. E., Hughes, T. P., Rust, J., & Tóme, F. C. (1980). Potassium supplements for oral diarrhoea regimens. The Lancet, 2(8199), 854.CrossRefGoogle Scholar
  30. Davey, M. W., Saeys, W., Hof, E., Ramon, H., Swennen, R. L., & Keulemans, J. (2009). Application of visible and near-infrared reflectance spectroscopy (VIS/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. Journal of Agricultural and Food Chemistry, 57, 1742–1751.CrossRefGoogle Scholar
  31. Davies, G. (1993). Domestic banana-beer production in Mpigi district, Uganda. Infomusa, 2(1), 12–15.Google Scholar
  32. De Alwis, A. A., & Fryer, P. J. (1990). The use of direct resistance heating in the food industry. Journal of Food Engineering, 11, 3–27.CrossRefGoogle Scholar
  33. Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., & Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: Benefits perceived by consumers. Journal of Food Engineering, 67(1–2), 241–246.CrossRefGoogle Scholar
  34. Demirel, D., & Turhan, M. (2003). Air-drying behaviour of dwarf Cavendish and Gros Michel banana slices. Journal of Food Engineering, 59(1), 1–11.CrossRefGoogle Scholar
  35. Domínguez, M., & Vendrell, M. (1994). Effect of ethylene treatment on ethylene production, EFE activity and ACC levels in peel and pulp of banana fruit. Postharvest Biology and Technology, 4(1–2), 167–177.CrossRefGoogle Scholar
  36. Draudt, H. N., & Huang, L. (1966). Effect of moisture content of freeze-dried peaches and bananas on changes during storage related to oxidative and carbonyl-amine browning. Journal of Agriculture and Chemistry, 14(2), 123–128.CrossRefGoogle Scholar
  37. Ehabe, E. E., Eyabi, G. D., & Numfor, F. A. (2006). Effect of sugar and NaCl soaking treatments on the quality of sweet banana figs. Journal of Food Engineering, 76, 573–578.CrossRefGoogle Scholar
  38. Emaga, T. H., Robert, C., Ronkart, S. N., Wathelet, B., & Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10), 4346–4354.CrossRefGoogle Scholar
  39. Englberger, L., Darnton-Hill, I., Coyne, T., Fitzgerald, M. H., & Marks, G. C. (2003). Carotenoid-rich bananas—A potential food source for alleviating vitamin A deficiency. Food and Nutrition Bulletin, 24(4), 303–318.Google Scholar
  40. Fagbemi, J. F., Esther, U., Tayo, A., & Omotoyin, A. (2009). Evaluation of the antimicrobial properties of unripe banana (Musa sapientum L.), lemon grass (Cymbopogon citratus S.) and turmeric (Curcuma longa L.) on pathogens. African Journal of Biotechnology, 8(7), 1176–1186.Google Scholar
  41. FAO (2009). Production data for banana and plantains: 2007-2008. Available at: Accessed 18 January 2010.
  42. Farkas, J. (1998). Irradiation as a method for decontaminating food—A review. International Journal of Food Microbiology, 44(3), 189–204.CrossRefGoogle Scholar
  43. Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82(2), 261–267.CrossRefGoogle Scholar
  44. Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77, 188–193.CrossRefGoogle Scholar
  45. Fuente-Blanco, S., Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics Sonochemistry, 44, 523–527.Google Scholar
  46. Galeazzi, M. A. M., & Sgarbieri, V. C. (1981). Substrate specificity and inhibition of polyphenoloxidase (PPO) from a dwarf variety of banana (Musa cavendishii). Journal of Food Science, 46(5), 1404–1410.CrossRefGoogle Scholar
  47. Ganjloo, A., Rahman, R. A., Bakar, J., Osman, A., & Bimakr, M. (2008). Feasibility of high-intensity ultrasonic blanching combined with heating for peroxidise inactivation of seedless guava (Psidium guajava L.). In: Proceedings of the 18th National Congress in Food Technology, Mashhad, Iran.Google Scholar
  48. Garcia, E., & Lajolo, F. M. (1988). Starch transformation during banana ripening: The amylase and glucosidase behavior. Journal of Food Science, 53, 1181–1188.CrossRefGoogle Scholar
  49. Golding, J. B., Shearer, D., McGlasson, W. B., & Wyllie, S. G. (1999). Relationships between respiration, ethylene, and aroma production in ripening banana. Journal of Agricultural and Food Chemistry, 47, 1646–1651.CrossRefGoogle Scholar
  50. Guerrero, S., Alzamora, S. M., & Gerschenson, L. N. (1996). Optimization of a combined factors technology for preserving banana purée to minimize colour changes using the response surface methodology. Journal of Food Engineering, 28(3–4), 307–322.CrossRefGoogle Scholar
  51. Icier, F., Yildiz, H., & Baysal, T. (2008). Polyphenoloxidase deactivation kinetics during ohmic heating of grape juice. Journal of Food Engineering, 85, 410–417.CrossRefGoogle Scholar
  52. Ilori, M. O., Adebusoye, S. A., Iawal, A. K., & Awotiwon, O. A. (2007). Production of biogas from banana and plantain peels. Advances in Environmental Biology, 1(1), 33–38.Google Scholar
  53. Issenberg, P., & Wick, E. L. (1963). Volatile components of banana. Journal of Agricultural and Food Chemistry, 11, 1–8.CrossRefGoogle Scholar
  54. Iwuoha, C. I., & Eke, O. S. (1996). Nigerian indigenous fermented foods: Their traditional process operation, inherent problems, improvements and current status. Food Research International, 29(5–6), 527–540.CrossRefGoogle Scholar
  55. Joye, D. D., & Luzio, G. A. (2000). Process for selective extraction of pectin from plant material by differential pH. Carbohydrate Polymers, 43, 337–342.CrossRefGoogle Scholar
  56. Kajuna, S., Bilanski, W. K., & Mittal, G. S. (1998a). Colour changes in bananas and plantains during storage. Journal of Food Processing and Preservation, 22, 27–40.CrossRefGoogle Scholar
  57. Kajuna, S., Bilanski, W. K., & Mittal, G. S. (1998b). Textural changes in banana and plantain pulp during ripening. Journal of Science Food and Agriculture, 75, 244–250.CrossRefGoogle Scholar
  58. Kanazawa, K., & Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in Cavendish banana. Journal of Agricultural and Food Chemistry, 48, 844–848.CrossRefGoogle Scholar
  59. Karamura, D., & Pickersgill, B. (1999). A classification of the clones of East African highland bananas (Musa) found in Uganda. Plant Genetic Resources Newsletter, 119, 1–6.Google Scholar
  60. Keyser, M., Műller, I. A., Cilliers, F. P., Nel, W., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies, 9(3), 348–354.CrossRefGoogle Scholar
  61. Kiyoshi, M., & Wahachiro, T. (2003). Change of polyphenol compounds in banana pulp during ripening. Food Preservation Science, 29(6), 347–351.Google Scholar
  62. Koffi, E. K. (2003). Development of cloud stable whey-fortified banana beverages. Ph.D. thesis, University of Georgia, Athens, Georgia.Google Scholar
  63. Koffi, E. K., Sims, C. A., & Bates, R. P. (1991). Viscosity reduction and prevention of browning in the preparation of clarified banana juice. Journal of Food Quality, 14, 209–218.CrossRefGoogle Scholar
  64. Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M., & Berg, R. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innovative Food Science and Emerging Technologies, 4(4), 377–385.CrossRefGoogle Scholar
  65. Kyamuhangire, W., Myhre, H., Sorensen, H. T., & Pehrson, R. (2002). Yield, characteristics and composition of banana juice extracted by the enzymatic and mechanical methods. Journal of the Science of Food and Agriculture, 82, 478–482.CrossRefGoogle Scholar
  66. Lee, W. C., Yusof, S., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 73(1), 55–63.CrossRefGoogle Scholar
  67. Lee, W. C., Yusof, S., Hamid, N. S., & Baharin, B. S. (2007). Effects of refining treatment and storage temperature on the quality of clarified banana juice. Food Science and Technology, 40(10), 1755–1764.Google Scholar
  68. Lehmann, U., & Robin, F. (2007). Slow digestible starch—Its structure and health implications: A review. Trends in Food Science and Technology, 18, 346–355.CrossRefGoogle Scholar
  69. Lehmann, U., Jacobasch, G., & Schmiedl, D. (2002). Characterization of resistant starch type III from banana (Musa acuminata). Journal of Agricultural and Food Chemistry, 50, 5236–5240.CrossRefGoogle Scholar
  70. Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55, 181–186.CrossRefGoogle Scholar
  71. Liang, Z., Cheng, Z., & Mittal, G. S. (2006). Inactivation of spoilage microorganisms in apple cider using a continuous flow pulsed electric field system. Food Science and Technology, 39(4), 351–357.Google Scholar
  72. López-Gómez, A., Fernández, P. S., Palop, A., Periago, P. M., Martinez-López, A., Marin-Iniesta, F., et al. (2009). Food safety engineering: An emergent perspective. Food Engineering Reviews, 1, 84–104.CrossRefGoogle Scholar
  73. Manzocco, L., Anese, M., & Nicoli, M. C. (2008). Radiofrequency inactivation of oxidative food enzymes in model systems and apple derivatives. Food Research International, 41(10), 1044–1049.CrossRefGoogle Scholar
  74. Marquenie, D., Geeraerd, A. H., Lammertyn, J., Soontjens, C., Impe, J. F. V., Michiels, C. W., et al. (2003). Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International Journal of Food Microbiology, 85(1–2), 185–196.CrossRefGoogle Scholar
  75. Marquenie, D., Michiels, C. W., Impe, J. F. V., Schrevens, E., & Nicolaï, B. M. (2003). Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology, 28(3), 455–461.CrossRefGoogle Scholar
  76. Marra, F., Zhang, L., & Lyng, J. G. (2009). Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering, 91, 497–508.CrossRefGoogle Scholar
  77. Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71–78.CrossRefGoogle Scholar
  78. Mermelstein, N. H. (1998). Microwave and radio frequency drying. Food Technology, 52(11), 84–86.Google Scholar
  79. Mishra, S., Mann, B., & Joshi, V. K. (2001). Functional improvement of whey protein concentrates on interaction with pectin. Food Hydrocolloids, 15, 9–15.CrossRefGoogle Scholar
  80. Mizrahi, S. (1996). Leaching of soluble solids during blanching of vegetables by ohmic heating. Journal of Food Engineering, 29, 153–166.CrossRefGoogle Scholar
  81. Mohamed, A., Xu, J., & Singh, M. (2010). Yeast leavened banana-bread: Formulation, processing, colour and texture analysis. Food Chemistry, 118, 620–626.CrossRefGoogle Scholar
  82. Mohapatra, D., Mishra, S., & Meda, V. (2009). Plantains and their postharvest uses: An overview. Stewart Postharvest Review, 5(5), 1–11.CrossRefGoogle Scholar
  83. Mohapatra, D., Mishra, S., & Sutar, N. (2010a). Banana and its byproduct utilization: An overview. Journal of Scientific and Industrial Research, 69, 323–329.Google Scholar
  84. Mohapatra, D., Mishra, S., & Sutar, N. (2010b). Banana post harvest practices: Current status and future prospects. Agricultural Reviews, 31(1), 56–62.Google Scholar
  85. Moreno, J., Chiralt, A., Escriche, I., & Serra, J. A. (2000). Effect of blanching/osmotic dehydration combined methods on quality and stability of minimally processed strawberries. Food Research International, 33(7), 609–616.CrossRefGoogle Scholar
  86. Morrelli, K. L., Hess-Pierce, B. M., & Kader, A. A. (2003). Genotypic variation in chilling sensitivity of mature-green bananas and plantains. Hort Technology, 13, 328–332.Google Scholar
  87. Muyonga, J. H., Ramteke, R. S., & Eipeson, W. E. (2001). Pre dehydration steaming changes physiochemical properties of unripe banana flour. Journal of Food Processing and Preservation, 25, 35–47.CrossRefGoogle Scholar
  88. Nimmol, C., Devahastin, S., Swasdisevi, T., & Soponronnarit, S. (2007). Drying and heat transfer behavior of banana undergoing combined low-pressure superheated steam and far-infrared radiation drying. Applied Thermal Engineering, 27(14–15), 2483–2494.CrossRefGoogle Scholar
  89. Nindo, C. I., Feng, H., Shen, G. Q., Tang, J., & Kang, D. H. (2003). Energy utilisation and microbial reduction in a new film drying system. Journal of Food Processing and Preservation, 27, 117–136.CrossRefGoogle Scholar
  90. Noci, F., Riener, J., Walkling-Ribeiro, M., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2008). Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. Journal of Food Engineering, 85, 141–146.CrossRefGoogle Scholar
  91. Norton, T., & Sun, D. (2008). Recent advances in the use of high pressure as an effective processing technique in the food Industry. Food and Bioprocess Technology, 1, 2–34.CrossRefGoogle Scholar
  92. Oey, I., Lille, M., Loey, A. V., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends in Food Science and Technology, 19(6), 320–328.CrossRefGoogle Scholar
  93. Oguntibeju, O. O. (2008). The biochemical, physiological and therapeutic roles of ascorbic acid. African Journal of Biotechnology, 7(25), 4700–4705.Google Scholar
  94. Oliveira, M. E. C., & Franca, A. S. (2002). Microwave heating of foodstuffs. Journal of Food Engineering, 53(4), 347–359.CrossRefGoogle Scholar
  95. Oliveira, I. M., Fernandez, F. A. N., Rodriguez, S., Sousa, P. H. M., Maia, G. A., & Figueiredo, R. W. (2006). Modelling and optimization of osmotic dehydration of banana followed by air-drying. Journal of Food Processing Engineering, 29, 400–413.CrossRefGoogle Scholar
  96. Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2008). Pulsed light treatments for food preservation—A review. Food and Bioprocess Technology, 3(1), 13–23.CrossRefGoogle Scholar
  97. Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chemistry, 115(4), 1312–1319.CrossRefGoogle Scholar
  98. Orsat, V., & Raghavan, G. S. V. (2005). Radio-frequency processing. In Sun (Ed.), Emerging technologies for food processing (pp. 445–468). London: Academic.CrossRefGoogle Scholar
  99. Patras, A., Brunton, N., Pieve, S. D., Butler, F., & Downey, G. (2009). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science and Emerging Technologies, 10(1), 16–22.CrossRefGoogle Scholar
  100. Pelayo, C., Vilas-Boas, E. V., Benichou, M., & Kader, A. A. (2003). Variability in responses of partially ripe bananas to 1-methylcyclopropene. Postharvest Biology and Technology, 28(1), 75–85.CrossRefGoogle Scholar
  101. Pereira, R. N., & Vicente, A. A. (2009). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International. doi: 10.1016/j.foodres.2009.09.013.Google Scholar
  102. Perera, N., Gamage, T. V., Wakeling, L., Gamlath, G. G. S., & Versteeg, C. (2010). Colour and texture of apples high pressure processed in pineapple juice. Innovative Food Science and Emerging Technologies, 11(1), 39–46.CrossRefGoogle Scholar
  103. Peumans, W. J., Zhang, W. L., Barre, A., Astoul, C. H., Balint-Kurti, P. J., Rovira, P., et al. (2000). Fruit-specific lectins from banana and plantain. Planta, 211, 546–554.CrossRefGoogle Scholar
  104. Picouet, P. A., Landl, A., Abadias, M., Castellari, M., & Viñas, I. (2009). Minimal processing of a Granny Smith apple purée by microwave heating. Innovative Food Science and Emerging Technologies, 10(4), 545–550.CrossRefGoogle Scholar
  105. Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena—An overview. Critical Reviews in Food Science and Nutrition, 47, 1–19.CrossRefGoogle Scholar
  106. Qin, B., Chang, F., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields. Lebensmittel-Wissenschaft und-Technologie, 28(6), 564–568.CrossRefGoogle Scholar
  107. Ramirez, R., Saraiva, J., Lamela, C. P., & Torres, J. A. (2009). Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Engineering Review, 1, 16–30.CrossRefGoogle Scholar
  108. Rastogi, N. K., Raghavarao, K., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69–112.CrossRefGoogle Scholar
  109. Riahi, E., & Ramaswamy, H. S. (2004). High pressure inactivation kinetics of amylase in apple juice. Journal of Food Engineering, 64(2), 151–160.CrossRefGoogle Scholar
  110. Robinson, J. C. (1996). Bananas and plantains: Crop production science in horticulture, Series 5 (pp. 1–33). UK: CAB International.Google Scholar
  111. Rodríguez-Ambriz, S. L., Islas-Hernández, J. J., Agama-Acevedo, E., Tovar, J., & Bello-Pérez, L. A. (2008). Characterization of a fibre-rich powder prepared by liquefaction of unripe banana flour. Food Chemistry, 107, 1515–1521.Google Scholar
  112. Ross, A. I. V., Griffithsa, M. W., Mittal, G. S., & Deeth, H. C. (2003). Combining non-thermal technologies to control food borne microorganisms. International Journal of Food Microbiology, 89, 125–138.CrossRefGoogle Scholar
  113. Rüdiger, H., & Gabius, H. J. (2001). Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconjugate Journal, 18, 589–613.CrossRefGoogle Scholar
  114. Sandu, C. (1986). Infrared radiative drying in food engineering: A process analysis. Biotechnology Progress, 2, 109–119.CrossRefGoogle Scholar
  115. Sarang S. S. (2007). Ohmic heating for thermal processing of low-acid foods containing solid particulates. PhD thesis. Ohio State University, USA.Google Scholar
  116. Sharrock, S., & Lustry, C. (2000). Nutritive value of banana. Annual report, INIBAP (pp. 28–31). Montpellier, France.Google Scholar
  117. Sila, D. N., Duvetter, T., Roeck, A. D., Verlent, I., Smout, C., Moates, G. K., et al. (2008). Texture changes of processed fruits and vegetables: Potential use of high-pressure processing. Trends in Food Science and Technology, 19(6), 309–319.CrossRefGoogle Scholar
  118. Simmonds, N. W. (1966). Bananas (2nd ed.). London: Longman.Google Scholar
  119. Sims, C. A., Bates, R. P., & Areola, A. G. (1994). Color, polyphenoloxidase, and sensory changes in banana juice as affected by heat and ultrafiltration. Journal of Food Quality, 17, 371–379.CrossRefGoogle Scholar
  120. Siriboon, N., & Banlusilp, P. (2004). A study on the ripening process of ‘Namwa’ banana. AU Journal of Technology, 7(4), 159–164.Google Scholar
  121. Sole, P. (1993). Banana processing. United States Patent RE34237.Google Scholar
  122. Soliva-Fortuny, R. C., Elez-Martınez, P., Sebastian-Caldero, M., & Martın-Belloso, O. (2004). Effect of combined methods of preservation on the naturally occurring microflora of avocado puree. Food Control, 15, 11–17.CrossRefGoogle Scholar
  123. Sothornvit, R., & Pitak, N. (2007). Oxygen permeability and mechanical properties of banana films. Food Research International, 40(3), 365–370.CrossRefGoogle Scholar
  124. Srivastava, M. K., & Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science, 158(1–2), 87–96.CrossRefGoogle Scholar
  125. Strydom, G. J., & Whitehead, C. S. (1990). The effect of ionizing radiation on ethylene sensitivity and postharvest ripening of banana fruit. Scientia Horticulturae, 41(4), 293–304.CrossRefGoogle Scholar
  126. Suntharlingum, S., & Ravindran, G. (1993). Physical and biochemical properties of green banana flour. Plant Foods for Human Nutrition, 43, 19–27.CrossRefGoogle Scholar
  127. Swasdisevi, T., Devahastin, S., Sa-Adchom, P., & Soponronnarit, S. (2009). Mathematical modelling of combined far-infrared and vacuum drying of banana slice. Journal of Food Engineering, 92(1), 100–106.CrossRefGoogle Scholar
  128. Tenbrink, H. B., Becker, N. D., & Wilson, C. A. (2009). Beverage. United States patent application no: US2009/0022853.Google Scholar
  129. Thomas, P., & Nair, P. M. (1971). Effect of gamma irradiation on polyphenol oxidase activity and its relation to skin browning in bananas. Phytochemistry, 10(4), 771–777.CrossRefGoogle Scholar
  130. Tiwari, B. K., O’Donnell, C. P., Patras, A., Brunton, N., & Cullen, P. J. (2009). Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research Technology, 228, 717–724.CrossRefGoogle Scholar
  131. Vega-Mercado, H., Gongora-Nieto, M. M., & Barbosa-Canovas, G. V. (2001). Advances in dehydration of foods. Journal of Food Engineering, 49, 271–289.CrossRefGoogle Scholar
  132. Vendrell, M. (1985). Effect of abscisic acid and ethephon on several parameters of ripening in banana fruit tissue. Plant Science, 40(1), 19–24.CrossRefGoogle Scholar
  133. Vicente, A. A. (2007). Novel technologies for the thermal processing of foods. ISBN 978-972-99080-9-5: 499-506. Accessed at
  134. Viquez, F., Lastreto, C., & Cooke, R. D. (1981). A study of the production of clarified banana juice using pectinolytic enzymes. Journal of Food Technology, 16, 115–122.CrossRefGoogle Scholar
  135. Vito, F. D., Ferrari, G., Lebovka, N. I., Shynkaryk, N. V., & Vorobiev, E. (2008). Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food and Bioprocess Technology, 1, 307–313.CrossRefGoogle Scholar
  136. Waliszewski, K. N., Aparicio, M. A., Bello, L. A., & Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate Polymers, 52, 237–242.CrossRefGoogle Scholar
  137. Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2008). Inactivation of Escherichia coli in a tropical fruit smoothie by a combination of heat and pulsed electric fields. Journal of Food Science, 73(8), 395–399.CrossRefGoogle Scholar
  138. Wall, M. M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Mua sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19, 434–445.CrossRefGoogle Scholar
  139. Walsh, K. B., Golic, M., & Greensill, C. V. (2004). Sorting of fruit using near infrared spectroscopy: Application to a range of fruit and vegetables for soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12(3), 141–148.CrossRefGoogle Scholar
  140. Wang, S., Chen, F., Wu, J., Wang, Z., Liao, X., & Hu, X. (2007a). Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering, 78(2), 693–700.CrossRefGoogle Scholar
  141. Wang, J., Li, Y. Z., Chen, R. R., Bao, J. Y., & Yang, G. M. (2007b). Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying. Food Chemistry, 104(4), 1516–1521.CrossRefGoogle Scholar
  142. Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409.CrossRefGoogle Scholar
  143. Wick, E. L., Yamanish, T., Kobayash, A., Valenzuela, S., & Issenberg, P. (1969). Volatile constituents of banana (M. cavendishii, variety: Valery). Journal of Agricultural and Food Chemistry, 17, 751–758.CrossRefGoogle Scholar
  144. Williams, P. C., & Norris, K. (2001). Near-infrared technology in the agricultural and food industries. St. Paul: American Association of Cereal Chemists, Inc.Google Scholar
  145. Wills, R. B. H., Lim, J. S. K., & Greenfield, H. (1984). Changes in chemical composition of 'Cavendish' banana (Musa acuminata) during ripening. Journal of Food Biochemistry, 8, 69–76.CrossRefGoogle Scholar
  146. Yousaf, M. S., Yusaof, S., Manap, M. Y. B. A., & Abd-Aziz, S. (2006). Physico-chemical, biochemical and sensory characteristics of berangan and mas banana (Musa sapientum) cultivars and their suitability for value added processing. Journal of Food Technology, 4(4), 229–134.Google Scholar
  147. Zamudio-Flores, P. B., Vargas-Torres, A., Perez-Gonzalez, J., Bosquez-Molina, E., & Bello-Perez, L. A. (2006). Films prepared with oxidized banana starch: Mechanical and barrier properties. Starch, 58, 274–282.CrossRefGoogle Scholar
  148. Zell, M., Cronin, D. A., Morgan, D. J., Marra, F., & Lyng, J. G. (2008). Solid food pasteurization by ohmic heating: Influence of process parameters. In: Proceedings of COMSOL conference, Boston, USA.Google Scholar
  149. Zhao, W., & Yang, R. (2008). Comparative study of inactivation and conformational change of lysozyme induced by pulsed electric fields and heat. European Food Research Technology, 228, 47–54.CrossRefGoogle Scholar
  150. Zhong, Q., Sandeep, K. P., & Swartzel, K. R. (2004). Continuous flow radio frequency heating of particulate foods. Innovative Food Science and Emerging Technologies, 5, 475–483.CrossRefGoogle Scholar
  151. Zude, M. (2003). Non-destructive prediction of banana fruit quality using VIS/NIR spectroscopy. Fruits, 58, 135–142.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Debabandya Mohapatra
    • 1
  • Sabyasachi Mishra
    • 2
  • Chandra Bhan Singh
    • 3
  • Digvir Singh Jayas
    • 3
    Email author
  1. 1.Faculty of Food Processing Technology and Bio-energyAnand Agricultural UniversityAnandIndia
  2. 2.College of Agricultural Engineering and Post Harvest TechnologyCentral Agricultural UniversityGangtokIndia
  3. 3.Department of Biosystems EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations