Food and Bioprocess Technology

, Volume 4, Issue 3, pp 364–386

Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—a Review

Review Paper

Abstract

The present review gives an overview of the use of fluorescence spectroscopy (i.e., conventional, excitation–emission matrix, and synchronous fluorescence) for determining changes in food products and their quality during technological process and storage. From the present review, it was shown that fluorescence spectroscopy is able to determine several properties (functional, composition, nutritional) without the use of chemical reagents. This is due to the use of chemometric tools (descriptive and predictive methods). The review focuses on the use of fluorescence spectroscopy for the determination of the quality of animal (i.e., dairy, meat, fish, and egg) and vegetable (oils, cereal, sugar, fruit, and vegetable) products as well as the identification of bacteria of agro-alimentary interest.

Keywords

Fluorescence spectroscopy Food systems Quality Chemometrics 

References

  1. Allais, I., Viaud, C., Pierre, A., & Dufour, E. (2004). A rapid method based on front-face fluorescence spectroscopy for the monitoring of the texture of meat emulsions and frankfurters. Meat Science, 67, 219–229.Google Scholar
  2. Ammor, S., Yaakoubi, K., Chevallier, I., & Dufour, E. (2004). Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. Journal of Microbiological Methods, 59, 271–281.Google Scholar
  3. Aparicio, R., Morales, M. T., & Alonso, V. (1997). Authentication of European virgin olive oils by their chemical compounds, sensory attributes, and consumers’ attitudes. Journal of Agricultural and Food Chemistry, 111, 3–10.Google Scholar
  4. Aubourg, S. P., Sotelo, C. G., & Pérez-Martín, R. (1998). Assessment of quality changes in frozen sardine (sardine pilchardus) by fluorescence detection. Journal of the American Oil Chemistry Society, 75, 575–580.Google Scholar
  5. Baeten, V., Meurens, M. T., Morales, R., & Aparicio, R. (1996). Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry, 44, 2225–2230.Google Scholar
  6. Baunsgaard, D., Andersson, C. A., Arndal, A., & Munck, L. (2000). Multiway chemometrics for mathematical separation of fluorescent colorants and colour precursors from spectrofluorometry of beet sugar and beet sugar thick juice as validated by HPLC analysis. Food Chemistry, 70, 113–121.Google Scholar
  7. Baunsgaard, D., Nørgaard, L., & Godshall, M. (2000). Fluorescence of raw cane sugars evaluated by chemometrics. Journal of Agricultural and Food Chemistry, 48, 4955–4962.Google Scholar
  8. Birlouez-Aragon, I., Nicolas, M., Metais, A., Marchond, N., Grenier, G., & Calvo, D. A. (1998). A rapid fluorimetric method to estimate the heat treatment of liquid milk. International Dairy Journal, 8, 771–777.Google Scholar
  9. Bosset, J. O., Jeangros, B., Berger, Th, Bütikofer, U., Collomb, M., Gauch, R., et al. (1999). Comparison de fromages à pâte dure de type Gruyère produits en région de montagne et de plaine. Revue Suisse d’Agriculture, 31, 17–22.Google Scholar
  10. Boubellouta, T., & Dufour, E. (2008). Effects of mild heating and acidification on the molecular structure of milk components as investigated by synchronous front-face fluorescence spectroscopy coupled with parallel factor analysis. Applied Spectroscopy, 62, 490–496.Google Scholar
  11. Boubellouta, T., & Dufour, E. (2010). Cheese-matrix characteristics during heating and cheese melting temperature prediction by synchronous fluorescence and mid-infrared spectroscopies. Food and Bioprocess Technology. doi:10.1007/s11947-010-0337-1.
  12. Boubellouta, T., Galtier, V., & Dufour, E. (2009). Effects of added minerals (calcium, phosphate, and citrate) on the molecular structure of skim milk as investigated by mid-infrared and synchronous fluorescence spectroscopies coupled with chemometrics. Applied Spectroscopy, 63, 1134–1141.Google Scholar
  13. Bro, R. (1999). Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemometrics and Intelligent Laboratory Systems, 46, 133–147.Google Scholar
  14. Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research, 92, 261–271.Google Scholar
  15. Carpenter, F. G., & Wall, J. H. (1972). Fluorescence in commercial sugar. In F. G. Carpenter & J. H. Wall (Eds.), Proceedings of the 1972 technical session on cane sugar refining research (pp. 47–61). New Orleans: USDA-ARS.Google Scholar
  16. Christensen, J., Nøgaard, L., Bro, R., & Engelsen, S. B. (2006). Multivariate autofluorescence of intact food systems. Chemical Reviews, 106, 1979–1994.Google Scholar
  17. Coulon, J. B., & Priolo, A. (2002). La qualité sensorielle des produits laitiers et de la viande dépend des fourrages consommés par les animaux. INRA Production Animales, 15, 333–342.Google Scholar
  18. De Ell, J. R., Prange, R. K., & Murr, D. P. (1996). Chlorophyll fluorescence of delicious apples at harvest as a potential predictor of superficial scald development during storage. Postharvest Biology and Technology, 9, 1–6.Google Scholar
  19. Downey, G., McIntyre, P., & Davies, A. N. (2002). Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the eastern Mediterranean by visible and near-infrared spectroscopy. Journal of Agricultural and Food chemistry, 50, 5520–5525.Google Scholar
  20. Dufour, E., & Riaublanc, A. (1997). Potentiality of spectroscopic methods for the characterisation of dairy products, I—Front-face fluorescence study of raw, heated and homogenised milks. Le Lait, 77, 657–670.Google Scholar
  21. Dufour, E., & Frencia, J. P. (2001). Les spectres de fluorescence frontale: une empreinte digitale de la viande. Viandes et Produits Carnés, 22, 9–14.Google Scholar
  22. Dufour, E., Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., & Mouhous Riou, N. (2000). Phase transition of triglycerides during semi-hard cheese ripening. International Dairy Journal, 10, 87–99.Google Scholar
  23. Dufour, E., Frencia, J. P., & Kane, E. (2003). Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness. Food Research International, 36, 415–423.Google Scholar
  24. Egelandsdal, B., Kvaal, K., & Isaksson, T. (1996). Autofluorescence spectra as related to tensile properties for perimysium from bovine masseter. Journal of Food Science, 61, 342–347.Google Scholar
  25. Egelandsdal, B., Wold, J. P., Sponnich, A., Neegaård, S., & Hildrum, K. I. (2002). On attempts to measure the tenderness of Longissimus Dorsi muscles using fluorescence emission spectra. Meat Science, 60, 187–202.Google Scholar
  26. Egelandsdal, B., Dingstad, G., Tøgersen, G., Lundby, F., & Langsrud, Ø. (2005). Autofluorescence quantifies collagen in suasage batters with a large variation in myoglobin content. Meat Science, 69, 35–46.Google Scholar
  27. Engelsen, S. A. (1997). Explorative spectrometric evaluations of frying oil deterioration. Journal of the American Oil Chemistry Society, 74, 1495–1508.Google Scholar
  28. Feinberg, M., Dupont, D., Efstathiou, T., Louâore, V., & Guyonnet, J. P. (2006). Evaluation of tracers for the authentification of thermal treatments of milks. Food Chemistry, 98, 188–194.Google Scholar
  29. Frencia, J. P., Thomas, E., & Dufour, E. (2003). Measure of meat tenderness using front face fluorescence spectroscopy. Science des Aliments, 23, 142–145.Google Scholar
  30. Gardner, H. W. (1979). Lipid hydroperoxide reactivity with proteins and amino acids: A review. Journal of Agricultural and Food Chemistry, 27, 220–229.Google Scholar
  31. Gatellier, P., Gomez, S., Gigaud, V., Berri, C., Le Bihan-Duval, E., & Santé-Lhoutellier, V. (2007). Use of fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Science, 76, 543–547.Google Scholar
  32. Ghosh, N., Verma, Y., Majudmer, S. K., & Gupta, P. K. (2005). A fluorescence spectroscopic study of honey and cane sugar syrup. Food Science and Technology Research, 11, 59–62.Google Scholar
  33. Guilbaut, G. G. (1989). Principles of fluorescence spectroscopy in the assay of food products. In L. Munck & A. Francisco (Eds.), Fluorescence analysis in foods (pp. 33–58). Copenhagen: Longman Group.Google Scholar
  34. Guimet, F., Ferré, J., Boqué, R., & Rius, F. X. (2004). Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation–emission matrix fluorescence spectroscopy. Analytica Chimica Acta, 515, 75–85.Google Scholar
  35. Guimet, F., Ferré, J., & Boqué, R. (2005). Rapid detection of olive-pomace oil adulteration in extra virgin olive oils from the protected denomination of origin « Siurana » using excitation–emission fluorescence spectroscopy and three-way methods for analysis. Analytica Chimica Acta, 544, 143–152.Google Scholar
  36. Hagen, S. F., Solhaug, K. A., Bengtsson, G. B., Borge, G. I. A., & Bilger, W. (2006). Chlorophyll fluorescence as a tool for non-destructive estimation of anthocyanins and total flavonoids in apples. Postharvest Biology and Technology, 41, 156–163.Google Scholar
  37. Hammami, M., Rouissi, H., Salah, N., Selmi, H., Al-Otaibi, M., Blecker, C., & Karoui, R. (2010). Fluorescence spectroscopy coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chemistry. doi:10.1016/j.foodchem.2010.03.107.
  38. Hasegawa, K., Endo, Y., & Fujimoto, K. (1992). Oxidative deterioration in dried fish model systems assessed by solid sample fluorescence spectrophotometry. Journal of Food Science, 57, 1123–1126.Google Scholar
  39. Herbert, S. (1999). Caractérisation de la structure moléculaire et microscopique de fromages à pâte molle. Analyse multivariée des données structurales en relation avec la texture. PhD Thesis, Ecole Doctorale Chimie Biologie de l’Université de Nantes, Nantes, France.Google Scholar
  40. Herbert, S., Riaublanc, A., Bouchet, B., Gallant, D. J., & Dufour, E. (1999). Fluorescence spectroscopy investigations of acid- and rennet-induced milk coagulation of milk. Journal of Dairy Science, 82, 2056–2062.Google Scholar
  41. Herbert, S., Mouhous, R. N., Devaux, M. F., Riaublanc, A., Bouchet, B., Gallant, J. D., et al. (2000). Monitoring the identity and the structure of soft cheeses by fluorescence spectroscopy. Le Lait, 80, 621–634.Google Scholar
  42. Hildrum, K. I., Wold, J. P., Segtnan, V. H., Renou, J. P., & Dufour, E. (2006). New spectroscopic techniques for online monitoring of meat quality. In L. M. L. Nollet & F. Toldra (Eds.), Advanced technologies for meat processing (pp. 88–129). London: Taylor & Francis.Google Scholar
  43. Jensen, S. A., Reenberg, S., & Munck, L. (1989). Fluorescence analysis in fish and meat technology. In A. D. Francisco (Ed.), Fluorescence analysis in foods (pp. 181–192). London: Longman Group.Google Scholar
  44. Karoui, R., & Dufour, E. (2003). Dynamic testing rheology and fluorescence spectroscopy investigations of surface to centre differences in ripened soft cheeses. International Dairy Journal, 13, 973–985.Google Scholar
  45. Karoui, R., & Dufour, E. (2006). Prediction of the rheology parameters of ripened semi-hard cheeses using fluorescence spectra in the UV and visible ranges recorded at a young stage. International Dairy Journal, 16, 1490–1497.Google Scholar
  46. Karoui, R., Mazerolles, G., & Dufour, E. (2003). Spectroscopic techniques coupled with chemometric tools for structure and texture determinations in dairy products: A review. International Dairy Journal, 13, 607–620.Google Scholar
  47. Karoui, R., Dufour, E., Pillonel, L., Picque, D., Cattenoz, T., & Bosset, J. O. (2004a). Determining the geographic origin of Emmental cheeses produced during winter and summer using a technique based on the concatenation of MIR and fluorescence spectroscopic data. European Food Research and Technology, 219, 184–189.Google Scholar
  48. Karoui, R., Dufour, E., Pillonel, L., Picque, D., Cattenoz, T., & Bosset, J. O. (2004b). Fluorescence and infrared spectroscopies: A tool for the determination of the geographic origin of Emmental cheeses manufactured during summer. Le Lait, 84, 359–374.Google Scholar
  49. Karoui, R., Bosset, J. O., Mazerolles, G., Kulmyrzaev, A., & Dufour, E. (2005a). Monitoring the geographic origin of both experimental French Jura hard cheeses and Swiss Gruyère and l'Etivaz PDO cheeses using mid-infrared and fluorescence spectroscopies. International Dairy Journal, 15, 275–286.Google Scholar
  50. Karoui, R., Dufour, E., Pillonel, L., Schaller, E., Picque, D., Cattenoz, T., et al. (2005b). Determination of the geographic origin of Emmental cheeses by combining infrared and fluorescence spectroscopies. International Dairy Journal, 15, 287–298.Google Scholar
  51. Karoui, R., Martin, B., & Dufour, E. (2005c). Potentiality of front-face fluorescence spectroscopy to determine the geographic origin of milks from Haute-Loire department (France). Le Lait, 85, 223–236.Google Scholar
  52. Karoui, R., Cartaud, G., & Dufour, E. (2006a). Front-face fluorescence spectroscopy as a rapid and non-destructive tool for differentiating various cereal products: A preliminary investigation. Journal of Agricultural and Food Chemistry, 54, 2027–2034.Google Scholar
  53. Karoui, R., Dufour, E., & De Baerdemaeker, J. (2006b). Common components and specific weights analysis: A tool for monitoring the molecular structure of semi-hard cheese throughout ripening. Analytica Chimica Acta, 572, 125–133.Google Scholar
  54. Karoui, R., Kemps, B., Bamelis, F., De Ketelaere, B., Mertens, K., Schoonheydt, R., et al. (2006c). Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1—Evolution of thick and thin albumens. European Food Research and Technology, 223, 303–312.Google Scholar
  55. Karoui, R., Kemps, B., Bamelis, F., De Ketelaere, B., Mertens, K., Schoonheydt, R., et al. (2006d). Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 2—Evolution of yolk. European Food Research and Technology, 223, 180–188.Google Scholar
  56. Karoui, R., Mouazen, A. M., Dufour, E., & De Baerdemaeker, J. (2006e). Utilisation of front face fluorescence spectroscopy for the determination of some chemical parameters in soft cheeses at external and central zones. Le Lait, 86, 155–169.Google Scholar
  57. Karoui, R., Thomas, E., & Dufour, E. (2006f). Utilisation of rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen-thawed fish fillets. Food Research International, 39, 349–355.Google Scholar
  58. Karoui, R., Dufour, E., Bosset, J. O., & De Baerdemaeker, J. (2007a). The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland. Food Chemistry, 101, 314–323.Google Scholar
  59. Karoui, R., Dufour, E., & De Baerdemaeker, J. (2007b). Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chemistry, 101, 1305–1314.Google Scholar
  60. Karoui, R., Dufour, E., Schoonheydt, R., & De Baerdemaeker, J. (2007c). Characterisation of soft cheese by front face fluorescence spectroscopy coupled with chemometric tools: Effect of the manufacturing process and sampling zone. Food Chemistry, 100, 632–642.Google Scholar
  61. Karoui, R., Schoonheydt, R., Decuypere, E., Nicolaï, B., & De Baerdemaeker, J. (2007d). Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2°C and relative humidity of 87%. Analytical Chimica Acta, 582, 83–91.Google Scholar
  62. Karoui, R., Schoonheydt, R., Decuypere, E., Nicolaï, B., & De Baerdemaeker, J. (2007e). Monitoring the egg freshness during storage under modified atmosphere by fluorescence spectroscopy. Food and Bioprocess Technology, 1, 346–356.Google Scholar
  63. Kim, M. S., Lefcourt, A. M., & Chen, Y. N. (2003). Multispectral laser-induced fluorescence imaging system for large biological samples. Applied Optics, 42, 3927–3934.Google Scholar
  64. Kulmyrzaev, A., & Dufour, E. (2002). Determination of lactulose and furosine in milk using front-face fluorescence spectroscopy. Le Lait, 82, 725–735.Google Scholar
  65. Kulmyrzaev, A., & Dufour, E. (2010). Relations between spectral and physicochemical properties of cheese, milk, and whey examined using multidimensional analysis. Food and Bioprocess Technology, 3, 247–256.Google Scholar
  66. Kulmyrzaev, A., Levieux, D., & Dufour, E. (2005). Front-face fluorescence spectroscopy allows the characterization of mild heat treatment applied to milk. Relations with the denaturation of milk proteins. Journal of Agricultural and Food Chemistry, 53, 502–507.Google Scholar
  67. Kyriakidis, N. B., & Skarkalis, P. (2000). Fluorescence spectra measurement of olive oil and other vegetable oils. Journal of the American Oil Chemistry Society, 83, 1435–1439.Google Scholar
  68. Lakowicz, J. R. (1983). Fluorophores. In J. R. Lakowicz (Ed.), Principles of fluorescence spectroscopy (pp. 63–93). New York: Plenum.Google Scholar
  69. Lebecque, A., Laguet, A., Chanonat, M., Lardon, S., & Dufour, E. (2003). Joint analysis of sensory and instrumental data applied to the investigation of the texture of Charolais meat. Science des Aliments, 23, 172–175.Google Scholar
  70. Leblanc, L., & Dufour, E. (2002). Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiology Letters, 211, 147–151.Google Scholar
  71. Leblanc, L., & Dufour, E. (2004). Monitoring bacteria growth using their intrinsic fluorescence. Sciences des Aliments, 24, 207–220.Google Scholar
  72. Leriche, F., Bordessoules, A., Fayolle, K., Karoui, R., Laval, K., Leblanc, L., et al. (2004). Alteration of raw-milk cheese by Pseudomonas spp.: Monitoring the sources of contamination using fluorescence spectroscopy and metabolic profiling. Journal of Microbiological Methods, 59, 33–41.Google Scholar
  73. Light, N., Champion, A. E., Voyle, C., & Baiely, A. J. (1985). The role of epimysial, perimysial and endomysial collagen in determining texture in 6 bovine muscles. Meat Science, 13, 137–149.Google Scholar
  74. Liu, X., & Metzger, L. E. (2007). Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. Journal of Dairy Science, 90, 24–37.Google Scholar
  75. Lötze, E., Huybrechts, C., Sadie, A., Theron, K. I., & Valcke, R. M. (2006). Fluorescence imaging as a non-destructive method for pre-harvest detection of bitter pit in apple fruit (Malus domestica Borkh). Postharvest Biology and Technology, 40, 287–294.Google Scholar
  76. Lucisano, M., Hidalgo, A., Comelli, E. M., & Rossi, M. (1996). Evolution of chemical and physical albumen characteristics during the storage of shell eggs. Journal of Agricultural and Food Chemistry, 44, 1235–1240.Google Scholar
  77. Marsh, R., Kajda, P., & Ryley, J. (1994). The effect of light on the vitamin B2 and the vitamin A content of cheese. Nahrung, 38, 527–32.Google Scholar
  78. Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., Mouhous Riou, N., & Dufour, E. (2001). Infrared and fluorescence spectroscopy for monitoring protein structure and interaction changes during cheese ripening. Le Lait, 81, 509–527.Google Scholar
  79. Møller, J. K. S., Parolari, G., Gabba, L., Christensen, J., & Skibsted, L. H. (2003). Monitoring chemical changes of dry-cured Parma ham during processing by surface autofluorescence spectroscopy. Journal of Agricultural and Food Chemistry, 51, 1224–1230.Google Scholar
  80. Moshou, D., Wahlen, S., Strasser, R., Schenk, A., De Baerdemaeker, J., & Ramon, H. (2005). Chlorophyll fluorescence as a tool for online quality sorting of apples. Biosystems Engineering, 91, 163–172.Google Scholar
  81. Munck, L. (2001). Spectroscopy: Fluorescence (review In: Encyclopedia of Food Science, Food Technology and Nutrition. 2nd Ed. revised from 1st Ed.). London: Academic Press, 5431–5441.Google Scholar
  82. Munck, L., Nørgaard, L., Engelsen, S. B., Bro, R., & Andersson, C. A. (1998). Chemometrics in food science—A demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometric and Intelligent Laboratory Systems, 44, 31–60.Google Scholar
  83. Newman, P. B. (1984). The use of video image-analysis for quantitative measurements of fatness in meat: 2. Comparison of via, visual assessment and total chemical fat estimation in a commercial environment. Meat Science, 10, 161–166.Google Scholar
  84. Nørgaard, L. (1995). Classification and prediction of quality and process parameters of thick juice and beet sugar by fluorescence spectroscopy and chemometrics. Zuckerindustrie, 120, 970–981.Google Scholar
  85. Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43, 193–201.Google Scholar
  86. Olsen, E., Vgot, G., Ekeberg, D., Sandbakk, M., Pettersen, J., & Nilsson, A. (2005). Analysis of the early stages of lipid oxidation in freeze-stored pork back fat and mechanicallly recovered poultry meat. Journal of Agricultural and Food Chemistry, 53, 338–348.Google Scholar
  87. Olsen, E., Veberg, A., Vogt, G., Tomic, O., Kirkhus, B., Ekeberg, D., et al. (2006). Analysis of early lipid oxidation in salmon pâté with cod liver oil and antioxidants. Journal of Food Science, 71, S284–S292.Google Scholar
  88. Papageorgiou, G. C., Govindjee (Ed.) (2004). Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht: SpringerGoogle Scholar
  89. Posudin, Y. I. (1998). Lasers in agriculture. New York: Science.Google Scholar
  90. Poulli, K. I., Mousdis, G. A., & Georgiou, C. A. (2005). Classification of edible and lampante virgin olive oil based on synchronous fluorescence and total luminescence spectroscopy. Analytica Chimica Acta, 542, 151–156.Google Scholar
  91. Poulli, K. I., Mousdis, G. A., & Georgiou, C. A. (2007). Rapid synchronous fluorescence method for virgin olive oil adulteration assessment. Analytica Chimica Acta, 105, 369–375.Google Scholar
  92. Ram, M. S., Seitz, L. M., & Dowell, F. E. (2004). Natural fluorescence of red and white wheat kernels. Cereal Chemistry, 81, 244–248.Google Scholar
  93. Ramanujam, N. (2000). Fluorescence spectroscopy in vivo. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 20–56). London: Wiley.Google Scholar
  94. Renou, J. P., Deponge, C., Gachon, P., Bonnefoy, J. C., Coulon, J. B., Garel, J. P., et al. (2004). Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry: Cow milk. Food Chemistry, 85, 63–66.Google Scholar
  95. Rost, F. W. D. (1995). Fluorescence microscopy (Vol 1 und 2). Cambridge: Cambridge University Press.Google Scholar
  96. Rouissi, H., Dridi, S., Kammoun, M., De Baerdemaeker, J., & Karoui, R. (2008). Front face fluorescence spectroscopy: A rapid tool for determining the effect of replacing soybean meal with scotch bean in the ration on the quality of Sicilo-Sarde ewe’s milk during lactation period. European Food Research and Technology, 226, 1021–1030.Google Scholar
  97. Ruoff, K., Karoui, R., Dufour, E., Luginbühl, W., Bosset, J. O., Bogdanov, S., et al. (2005). Authentication of the botanical origin of honey by front-face fluorescence spectroscopy, a preliminary study. Journal of Agricultural and Food Chemistry, 53, 1343–1347.Google Scholar
  98. Ruoff, R., Luginbühl, W., Künzli, R., Bogdanov, S., von der Ohe, K., von der Ohe, W., et al. (2006). Authentication of the botanical and geographical origin of honey by front face fluorescence spectroscopy. Journal of Agricultural and Food Chemistry, 54, 6858–6866.Google Scholar
  99. Sahar, A., Boubellouta, T., Lepetit, J., & Dufour, E. (2009). Front-face fluorescence spectroscopy as a tool to classify seven bovine muscles according to their chemical and rheological characteristics. Meat Science, 83, 672–677.Google Scholar
  100. Sahar, A., Boubellouta, T., Portanguen, S., Kondjoyan, A., & Dufour, E. (2009). Synchronous front-face fluorescence spectroscopy coupled with Parallel Factors (PARAFAC) analysis to study the effects of cooking time on meat. Journal of Food Science, 74, E534–E539.Google Scholar
  101. Saito, Y. (2009). Monitoring raw material by laser-induced fluorescence spectroscopy in the production. In M. Zude (Ed.), Optical monitoring of fresh and processed agricultural crops (pp. 319–336). New York: CRC.Google Scholar
  102. Sayago, A., Morales, M. T., & Aparicio, R. (2004). Detection of hazelnut oil in virgin olive oil by a spectrofluorimetric method. European Food Research and Technology, 218, 480–483.Google Scholar
  103. Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of front-face fluorescence for assessing thermal processing of milk. Journal of Food Science, 71, 69–74.Google Scholar
  104. Seiden, P., Bro, R., Poll, L., & Munck, L. (1996). Exploring fluorescence spectra of apple juice and their connection to quality parameters by chemometrics. Journal of Agricultural and Food Chemistry, 44, 3202–3205.Google Scholar
  105. Sikorska, E., Górecki, T., Khmelinskii, I. V., Sikorski, M., & De Keukeleire, D. (2004). Fluorescence spectroscopy for characterization and differentiation of beers. Journal of the Institute of the Brewing, 110, 267–275.Google Scholar
  106. Sikorska, E., Górecki, T., Khmelinskii, I. V., Sikorski, M., & Kozioł, J. (2005). Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chemistry, 89, 217–225.Google Scholar
  107. Skjervold, P. O., Taylor, R. G., Wold, J. P., Berge, P., Abouelkaram, S., Culioli, J., et al. (2003). Development of intrinsic fluorescent multispectral imagery specific for fat, connective tissue, and myofibers in meat. Journal of Food Science, 68, 1161–1168.Google Scholar
  108. Smilde, A., Bro, R., & Geladi, P. (2004). Multi-way analysis with application in the chemical sciences. England: Wiley.Google Scholar
  109. Song, J., Deng, W., & Beaudy, R. M. (1997). Changes in chlorophyll fluorescence of apple fruit during maturation, ripening, and senescence. Hort Science, 32, 891–896.Google Scholar
  110. Stadelman, W. J., Ziegler, F., & Darroch, J. G. (1954). The effect of egg temperature on its broken-out albumen quality evaluation. Poultry Science, 33, 1082–1083.Google Scholar
  111. Strasburg, G. M., & Ludescher, R. D. (1995). Theory and applications of fluorescence spectroscopy in food research. Trends in Food Science & Technology, 6, 69–75.Google Scholar
  112. Swatland, H. J. (1987). Autofluorescence of adipose tissue measured with fibre optique. Meat Science, 19, 277–284.Google Scholar
  113. Swatland, H. J., & Findlay, C. J. (1997). On-line probe prediction of beef toughness, correlating sensory evaluation with fluorescence detection of connective tissue and dynamic analysis of overall toughness. Food Quality and Preference, 8, 233–239.Google Scholar
  114. Swatland, H. J., Gullet, E., Hore, T., & Buttenham, S. (1995). UV fiber-optic probe measurements of connective tissue in beef correlated with taste panel scores for chewiness. Food Research International, 28, 23–30.Google Scholar
  115. Swatland, H. J., Nielsen, T., & Andersen, J. R. (1995). Correlations of mature beef palatability with optical probing of raw meat. Food Research International, 28, 403–416.Google Scholar
  116. Symons, S. J., & Dexter, J. E. (1991). Computer analysis of fluorescence for the measurement of flour refinement as determined by flour ash content, flour grade color, and tristimulus color measurements. Cereal Chemistry, 68, 454–460.Google Scholar
  117. Symons, S. J., & Dexter, J. E. (1992). Estimation of milling efficiency: Prediction of flour refinement by the measurement of pericarp fluorescence. Cereal Chemistry, 69, 137–141.Google Scholar
  118. Symons, S. J., & Dexter, J. E. (1993). Relationship of flour aleurone fluorescence to flour refinement for some Canadian hard common wheat classes. Cereal Chemistry, 70, 90–95.Google Scholar
  119. Symons, S. J., & Dexter, J. E. (1994). Aleurone and pericarp fluorescence as estimators of mill stream refinement for various Canadian wheat classes. Journal of Cereal Science, 23, 73–83.Google Scholar
  120. Tourkya, B., Boubellouta, T., Dufour, E., & Leriche, F. (2009). Fluorescence spectroscopy as a promising tool for a polyphasic approach to Pseudomonad taxonomy. Current Microbiology, 58, 39–46.Google Scholar
  121. Valeur, B., & Bochon, J. C. (Eds.). (2001). New trends in fluorescence spectroscopy—Applications to chemical and life sciences. Berlin: Springer.Google Scholar
  122. Veberg, A. (2006). Fluorescence spectroscopy of food lipid oxidation. PhD Thesis, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Norway, Norwege.Google Scholar
  123. Veberg, A., Olsen, E., Vogt, G., Mielnik, M., Nilsen, A. N., & Wold, J. P. (2006). Front face fluorescence spectroscopy—A rapid method to detect early lipid oxidation in freeze stored minced Turkey meat. Food Science, 71, 364–370.Google Scholar
  124. Wold, J. P., Kvaal, K., & Egelandsdal, B. (1999). Quantification of intramuscular fat content in beef by combining autofluorescence spectra and autofluorescence images. Applied Spectroscopy, 53, 448–456.Google Scholar
  125. Wold, J. P., Lundby, F., & Egelandsdal, B. (1999). Quantification of connective tissue (hydroxyproline) in round beef by autofluorescence spectroscopy. Journal of Food Science, 64, 377–383.Google Scholar
  126. Wold, J. P., Jørgensen, K., & Lundby, F. (2002). Nondestructive measurement of light-induced oxidation in dairy products by fluorescence spectroscopy and imaging. Journal of Dairy Science, 85, 1693–1704.Google Scholar
  127. Wold, J. P., Veberg, A., Nilsen, A., Iani, V., Juzenas, P., & Moan, J. (2005). The role of naturally occurring chlorophyll and porphyrins in light-induced oxidation of dairy products. A study based on fluorescence spectroscopy and sensory analysis. International Dairy Journal, 15, 343–353.Google Scholar
  128. Zaïdi, F., Rouissi, H., Dridi, S., Kammoun, M., De Baerdemaeker, J., & Karoui, R. (2008). Front face fluorescence spectroscopy as a rapid and non destructive tool for differentiating between Sicilo-Sarde and Comisana ewe’s milk during lactation period: A preliminary study. Food Bioprocess and Technology, 1, 143–151.Google Scholar
  129. Zandomeneghi, M. (1999). Fluorescence of cereal flours. Journal of Agricultural and Food Chemistry, 47, 878–882.Google Scholar
  130. Zandomeneghi, M., Festa, C., & Carbonaro, L. (2000). Front-surface absorbance spectra of wheat flour: Determination of Carotenoids. Journal of Agricultural and Food Chemistry, 48, 2216–2221.Google Scholar
  131. Zandomeneghi, M., Carbonaro, L., Calucci, L., Pinzino, C., Galleschi, L., & Ghiringhelli, S. (2003). Direct fluorometric determination of fluorescent substances in powders: The case of riboflavin in cereal flours. Journal of Agricultural and Food Chemistry, 51, 2888–2895.Google Scholar
  132. Zandomeneghi, M., Carbonaro, L., & Caffarata, C. (2005). Fluorescence of vegetable oils: Olive oils. Journal of Agricultural and Food Chemistry, 53, 759–766.Google Scholar
  133. Zude, M. (Ed.). (2008). Optical methods for monitoring fresh and processed food—Basics and applications for a better understanding of non-destructive sensing. Boca Raton: Taylor & Francis.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Food Technology, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium

Personalised recommendations