Food and Bioprocess Technology

, Volume 3, Issue 6, pp 878–882 | Cite as

Application of Diode-Laser Raman Spectroscopy for In situ Investigation of Meat Spoilage

  • Kay Sowoidnich
  • Heinar Schmidt
  • Martin Maiwald
  • Bernd Sumpf
  • Heinz-Detlef Kronfeldt


Raman spectroscopy is well suited for non-invasive and non-destructive analysis. The spectra provide detailed information about the composition of the matter like a fingerprint on molecular level. Here, we have applied Raman spectroscopy for the characterization of meat spoilage. For this purpose, pork chops (musculus longissimus dorsi) were ice-stored at 5 °C, and time-dependent Raman spectra were measured daily up to 3 weeks post mortem. A prototype Raman probe for meat was constructed featuring a miniaturized optical bench combined with a customized 671-nm microsystem diode laser for the integration into a handheld device. During the time-dependent investigations with this laser scanner, the Raman spectra preserve their basic spectral features, but small changes of the protein Raman signals occur during storage. The time correlation of the complex spectra were analyzed with principal components analysis leading to a distinction of spectra on the time scale between day 8 and 10 typically. This corresponds to the transition from unspoiled meat to meat at and beyond the end of shelf life identified by means of visual inspection.


Raman spectroscopy Portable Raman sensor In situ Meat spoilage Diode laser 



This work was performed within the project “FreshScan” funded by the German Federal Ministry of Education and Sciences (BMBF) under the contract number 16SV2332. We wish to thank Vion Lausitz GmbH, Kasel-Golzig for their cooperation when procuring the meat samples and F. Schwägele from the Max Rubner-Institute, Kulmbach for performing the chemical reference analyses. Very special thanks go to our mechanical workshop and technicians whose skilled work has made possible this development.


  1. Alexandrakis, D., Downey, G., & Scannell, A. G. M. (2010). Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0298-4.Google Scholar
  2. Ammor, M. S., Argyri, A., & Nychas, G. J. E. (2009). Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Science, 81(3), 507–514.Google Scholar
  3. Balasubramanian, S., Panigrahi, S., Logue, C. M., Gu, H., & Marchello, M. (2009). Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. Journal of Food Engineering, 91(1), 91–98.CrossRefGoogle Scholar
  4. Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: a practical guide (1st ed.). New York: Wiley.Google Scholar
  5. Blixt, Y., & Borch, E. (1999). Using an electronic nose for determining the spoilage of vacuum-packaged beef. International Journal of Food Microbiology, 46(2), 123–134.CrossRefGoogle Scholar
  6. Brereton, R. G. (2007). Applied chemometrics for scientists (1st ed.). Hoboken: Wiley.CrossRefGoogle Scholar
  7. Carew, E. B., Stanley, H. E., Seidel, J. C., & Gergeley, J. (1983). Studies of myosin and its proteolytic fragments by laser Raman spectroscopy. Biophysical Journal, 44(2), 219–224.CrossRefGoogle Scholar
  8. Carew, E. B., Asher, I. M., & Stanley, H. E. (1975). Laser Raman spectroscopy—new probe of myosin substructure. Science, 188(4191), 933–936.CrossRefGoogle Scholar
  9. Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33(1), 19–33.CrossRefGoogle Scholar
  10. Díaz, P., Nieto, G., Garrido, M. D., & Bañón, S. (2008). Microbial, physical-chemical and sensory spoilage during the refrigerated storage of cooked pork loin processed by the sous vide method. Meat Science, 80(2), 287–292.CrossRefGoogle Scholar
  11. Ellis, D. I., & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science & Technology, 12(11), 414–424.CrossRefGoogle Scholar
  12. Ellis, D. I., Broadhurst, D., & Goodacre, R. (2004). Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Analytica Chimica Acta, 514(2), 193–201.CrossRefGoogle Scholar
  13. Fjelkner-Modig, S., & Tornberg, E. (1986). Water distribution in Porcine M. longissimus dorsi in relation to sensory properties. Meat Science, 17(3), 213–231.CrossRefGoogle Scholar
  14. Keller, S., Löchte, T., Dippel, B., & Schrader, B. (1993). Quality control of food with near-infrared-excited Raman spectroscopy. Fresenius' Journal of Analytical Chemistry, 346(6–9), 863–867.CrossRefGoogle Scholar
  15. Li-Chan, E. C. Y. (1996). The applications of Raman spectroscopy in food science. Trends in Food Science & Technology, 7(11), 361–370.CrossRefGoogle Scholar
  16. Lin, M., Al-Holy, M., Mousavi-Hesary, M., Al-Qadiri, H., Cavinato, A. G., & Rasco, B. A. (2004). Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600–1100 nm). Letters in Applied Microbiology, 39(2), 148–155.CrossRefGoogle Scholar
  17. Lovestead, T. M., & Bruno, T. J. (2010). Detection of poultry spoilage markers from headspace analysis with cryoadsorption on a short alumina PLOT column. Food Chemistry, 121(4), 1274–1282.CrossRefGoogle Scholar
  18. Maiwald, M., Ginolas, A., Müller, A., Sahm, A., Sumpf, B., Erbert, G., et al. (2008). Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5-W optical output power at 671 nm. IEEE Photonics Technology Letters, 20(19), 1627–1629.CrossRefGoogle Scholar
  19. Marigheto, N. A., Kemsley, E. K., Potter, J., Belton, P. S., & Wilson, R. H. (1996). Effects of sample heating in FT-Raman spectra of biological materials. Spectrochimica Acta Part A, 52(12), 1571–1579.CrossRefGoogle Scholar
  20. Schmidt, H., Blum, J., Sowoidnich, K., Sumpf, B., Schwägele, F., & Kronfeldt, H.-D. (2009a). In-situ characterization of meat aging with diode laser Raman spectroscopy. In: Kim, Tu, & Chao (Eds.) Proceedings of SPIE “Sensing for agriculture and food quality and safety”, Vol 7315 (pp. 731509–731509-8), 13–17 April 2009, Orlando, Florida, USA.Google Scholar
  21. Schmidt, H., Sowoidnich, K., Maiwald, M., Sumpf, B., & Kronfeldt, H.-D. (2009b). Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser. In: Kim, Tu, & Chao (Eds.) Proceedings of SPIE “Advanced environmental, chemical, and biological sensing technologies”, Vol 7312 (pp. 73120H–73120H-8), 13–17 April 2009, Orlando, Florida, USA.Google Scholar
  22. Schneider, J., Wulf, J., Surowsky, B., Schmidt, H., Schwägele, F., & Schlüter, O. (2008). Fluorimetric detection of protoporphyrins as an indicator for quality monitoring of fresh intact pork meat. Meat Science, 80(4), 1320–1325.CrossRefGoogle Scholar
  23. Schrader, B., Schulz, H., Andreev, G. N., Klump, H. H., & Sawatzki, J. (2000). Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art. Talanta, 53(1), 35–45.CrossRefGoogle Scholar
  24. Segelstein, D. J. (1981). The complex refractive index of water. M.S. Thesis. Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri, USA.Google Scholar
  25. Takatani, S., & Graham, M. D. (1979). Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Transactions on Biomedical Engineering, BME, 26(12), 656–664.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Kay Sowoidnich
    • 1
  • Heinar Schmidt
    • 1
  • Martin Maiwald
    • 2
  • Bernd Sumpf
    • 2
  • Heinz-Detlef Kronfeldt
    • 1
  1. 1.Technische Universität Berlin, Institut für Optik und Atomare PhysikBerlinGermany
  2. 2.Ferdinand-Braun-Institut, Leibniz-Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations