Food and Bioprocess Technology

, Volume 4, Issue 4, pp 610–615 | Cite as

Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment

  • Francisca I. P. Oliveira
  • Maria I. Gallão
  • Sueli Rodrigues
  • Fabiano André Narciso FernandesEmail author


This work examined the influence of the ultrasonic pre-treatment prior to air drying on dehydration of jambo (Syzygium malaccense L.) also known as Malay apple. This study allowed the estimation of water loss and sugar gain during the pre-treatment and the effective water diffusivity in the air-drying process for jambo subjected to ultrasonic pre-treatment. Results showed that during the ultrasonic treatment, in distilled water, the Malay apples lost sugar, so such a pre-treatment stage can be a practical process to produce dried fruits with lower sugar content. The water effective diffusivity increased by 28.1% (best result) after application of ultrasound, which caused a reduction of about 27.3% in the total drying time.


Syzygium malaccense L. Jambo Drying Ultrasound Optimization 



Effective diffusivity (m2/min)


Moisture content of the fruit (gwater/gdry solids)


Equilibrium moisture content of the fruit (gwater/gdry solids)


Time (h)


Water loss (%)


Solid gain (%)


Initial fruit moisture on wet basis (gwater/g)


Final fruit moisture on wet basis (gwater/g)


Initial fruit mass (g)


Final fruit mass (g)


Bed height of the fruit (m)



The authors thank the Brazilian funding institutes CAPES and CNPq.


  1. AOAC (1990). Moisture in dried fruits. In: Official methods of analysis. Association of Official Analytical Chemists, no 934.06, Washington, USA.Google Scholar
  2. Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67, 167–177.CrossRefGoogle Scholar
  3. Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2010). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimization and microstructure evaluation. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0220-0.Google Scholar
  4. Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.CrossRefGoogle Scholar
  5. Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82, 261–267.CrossRefGoogle Scholar
  6. Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006a). Optimization of osmotic dehydration of papaya followed by air-drying. Food Research International, 39, 492–498.CrossRefGoogle Scholar
  7. Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006b). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77, 188–193.CrossRefGoogle Scholar
  8. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008a). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT—Food Science and Technology, 41, 604–610.Google Scholar
  9. Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008b). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1, 339–345.CrossRefGoogle Scholar
  10. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90, 186–190.CrossRefGoogle Scholar
  11. Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2010). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0323-7.Google Scholar
  12. Fuente-Blanco, S., Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics Sonochemistry, 44, e523–e527.Google Scholar
  13. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  14. Morton, J. F. (1987). Malay apple. In: J. F. Morton (Ed.), Fruits of warm climates (pp. 378–381). Miami: Creative Resources Systems.Google Scholar
  15. Oliveira, I. M., Fernandes, F. A. N., Rodrigues, S., Sousa, P. H. M., Maia, G. A., & Figueiredo, R. W. (2006). Modeling and optimization of osmotic dehydration of banana followed by air-drying. Journal of Food Process Engineering, 29, 400–413.CrossRefGoogle Scholar
  16. Rodrigues, S., & Fernandes, F. A. N. (2007). Image analysis of osmotically dehydrated fruits: melons dehydration in a ternary system. European Food Research and Technology, 225, 685–691.CrossRefGoogle Scholar
  17. Rodrigues, S., Gomes, M. C. F., Gallão, M. I., & Fernandes, F. A. N. (2009a). Effect of ultrasound-assisted osmotic dehydration on cell structure of sapotas. Journal of the Science of Food and Agriculture, 89, 665–670.CrossRefGoogle Scholar
  18. Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., & Fernandes, F. A. N. (2009b). Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Drying Technology, 27, 220–225.CrossRefGoogle Scholar
  19. Salvatori, D., Andrés, A., Albors, A., Chiralt, A., & Fito, P. (1998). Structural and compositional profiles in osmotically dehydrated apple. Journal of Food Science, 63, 606–610.CrossRefGoogle Scholar
  20. Salvatori, D., Andrés, A., Chiralt, A., & Fito, P. (1999). Osmotic dehydration progression in apple tissue I: spatial distribution of solutes and moisture content. Journal of Food Engineering, 42, 125–132.CrossRefGoogle Scholar
  21. Tarleton, E. S., & Wakeman, R. J. (1998). Ultrasonically assisted separation process. In: M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in food processing (pp. 193–218). Glasgow: Blackie Academic and Professional.Google Scholar
  22. Teles, U. M., Fernandes, F. A. N., Rodrigues, S., Lima, A. S., Maia, G. A., & Figueiredo, R. W. (2006). Optimization of osmotic dehydration of melons followed by air-drying. International Journal of Food Science and Technology, 41, 674–680.CrossRefGoogle Scholar
  23. Uribe, E., Miranda, M., Vega-Gálvez, A., Quispe, I., Clavería, R., & Di Scala, K. (2010). Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas): influence of temperature on diffusion coefficients and kinetic parameters. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0336-2.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Francisca I. P. Oliveira
    • 1
  • Maria I. Gallão
    • 2
  • Sueli Rodrigues
    • 3
  • Fabiano André Narciso Fernandes
    • 1
    Email author
  1. 1.Departamento de Engenharia QuimicaUniversidade Federal do CearaFortalezaBrazil
  2. 2.Departamento de BiologiaUniversidade Federal do CearaFortalezaBrazil
  3. 3.Departamento de Tecnologia dos AlimentosUniversidade Federal do CearaFortalezaBrazil

Personalised recommendations