Food and Bioprocess Technology

, Volume 4, Issue 2, pp 320–326 | Cite as

Mass Transfer Modelling During Osmotic Dehydration of Jumbo Squid (Dosidicus gigas): Influence of Temperature on Diffusion Coefficients and Kinetic Parameters

  • Elsa Uribe
  • Margarita Miranda
  • Antonio Vega-GálvezEmail author
  • Issis Quispe
  • Rodrigo Clavería
  • Karina Di Scala


Mathematical modelling was used to study the effect of process temperature on moisture and salt mass transfer during osmotic dehydration (OD) of jumbo squid with 6% (w v −1) NaCl at 75, 85 and 95 °C. The diffusion coefficients for moisture and salt increased with temperature. Based on an Arrhenius-type equation, activation energy values of 62.45 kJ mol−1 and 52.14 kJ mol−1 for moisture and salt, respectively, were estimated. Simulations of mass transfer for both components were performed according to Newton, Henderson and Pabis, Page, Weibull and logarithmic mathematical expressions. The influence of drying temperature on the kinetic parameters was also studied. Based on statistical tests, the Weibull and logarithmic models were the most suitable to describe the mass transfer phenomena during OD of jumbo squid.


Osmotic dehydration Mathematical modelling Drying Kinetics Diffusion coefficients Jumbo squid 



Osmotic dehydration


Parameter of Eqs. 7 and 10


Parameter of Eq. 10


Moisture diffusion coefficient, m2 s−1


Salt diffusion coefficient, m2 s−1


Activation energy, kJ mol−1


Kinetic parameter of drying models, min−1


Sample thickness, m


Salt ratio, dimensionless


Moisture ratio, dimensionless


Parameter of Eq. 8


Process time, minute


Process temperature, K


Equilibrium moisture content, gram water per gram of dry matter


Salt content, gram of NaCl per gram dry matter


Initial salt content, gram of NaCl per gram dry matter


Moisture content, gram water per gram dry matter


Initial moisture content, gram water per gram dry matter


Equilibrium salt content, gram water per gram dry matter

Greeks symbols


Shape parameter of Weibull model


Scale parameter of Weibull model, min



The authors gratefully acknowledge the Research Department of Universidad de La Serena (DIULS), Chile, for providing financial support to the project DIULS 220-2-14.


  1. Abugoch, L., Guarda, A., Pérez, L., & Paredes, P. (1999). Determinación de la composición químico proximal y la formulación de un producto tipo gel jibia (Dosidicus gigas). Sociedad Latinoamericana de Nutrición, 49(2), 156–161.Google Scholar
  2. Allali, H., Marchal, L., & Vorobiev, E. (2008). Blanching of strawberries by Ohmic heating: effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0115-5. in press.Google Scholar
  3. A.O.A.C. Official method of analysis. (1990). 15th Ed. Association of Official Analytical Chemists, Washington, DC, USA.Google Scholar
  4. Burhan Uddin, M., Ainsworth, P., & Ibanoğlu, Ş. (2004). Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Journal of Food Engineering, 65, 473–477.CrossRefGoogle Scholar
  5. Collignan, A., Bohuon, P., Deumier, F., & Poligné, I. (2001). Osmotic treatment of fish and meat products. Journal of Food Engineering, 49, 153–162.CrossRefGoogle Scholar
  6. Cortés-Ruiz, J., Pacheco-Aguilar, R., Lugo-Sanchez, M., Carvallo-Ruiz, M., & Garcia-Sanchez, G. (2008). Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation. Food Chemistry, 110, 486–492.CrossRefGoogle Scholar
  7. Corzo, O., & Bracho, N. (2008). Application of Weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. LWT-Food and Science Technology, 41, 1108–1115.CrossRefGoogle Scholar
  8. Crank, J. (1975). The mathematics of diffusion (2nd ed.). New York: Oxford University Press.Google Scholar
  9. Ertekin, O. C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349–359.CrossRefGoogle Scholar
  10. Gallart-Jornet, L., Barat, J. M., Rustad, T., Erikson, U., Escriche, I., & Fito, P. (2007). Influence of brine concentrations on Atlantic salmon fillet salting. Journal of Food Engineering, 80, 267–275.CrossRefGoogle Scholar
  11. Khan, M., Ahme, L., Oliveira, J., & Oliveira, F. (2008). Prediction of water and soluble solids concentration during osmotic dehydration of mango. Food and Bioproducts Processing, 86, 7–13.CrossRefGoogle Scholar
  12. Lemus-Mondaca, R., Miranda, M., Ándres, A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of osmótica pretreatment on hot-air drying kinetics and quality of Chilean papaya (Carica pubescens). Drying Technology, 27(10), 1105–1115.Google Scholar
  13. Medina-Vivanco, A., Sobral, P. J., & Hubinger, M. D. (2002). Osmotic dehydration of tilapia fillets in limited volume of ternary solutions. Chemical Engineering Journal, 86, 199–205.CrossRefGoogle Scholar
  14. Mujaffar, S., & Sankat, C. (2006). The mathematical modelling of the osmotic dehydration of shark fillets at different brine temperatures. International Journal of Food Science and Technology, 41, 405–416.CrossRefGoogle Scholar
  15. Nicoletti Telis, V. R., Romanelli, P. F., Gabas, A.-L., & Telis-Romero, J. (2003). Salting kinetics and salt diffusivities in farmed Pantanal caiman muscle. Pesquisa Agropecuaria Brasileira, 38(4), 529–535.CrossRefGoogle Scholar
  16. Oladele, A. K., & Odedeji, O. D. (2008). Osmotic dehydration of catfish (Hemisynodontis membranaceus): effect of temperature and time. Pakistan Journal of Nutrition, 7(1), 57–61.CrossRefGoogle Scholar
  17. Rahman, S. (2006). Drying of fish and seafood. In A. Mujumdar (Ed.), Handbook of industrial drying, Chap 22. Florida: CRC Press.Google Scholar
  18. Rocha, F., & Vega, M. (2003). Overview of cephalopod fisheries in Chilean waters. Fisheries Research, 60, 151–159.CrossRefGoogle Scholar
  19. Ruiz-López, I., Castillo-Zamudio, R. I., Salgado-Cervantes, M. A., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2008). Mass transfer modeling during osmotic dehydration of hexahedral pineapple slices in limited volume solutions. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0102-x. in press.Google Scholar
  20. Schmidt, F. M., Carciofi, B. A. M., & Laurindo, J. B. (2009). Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. Journal of Food Engineering, 91, 553–559.CrossRefGoogle Scholar
  21. Sobukola, O., Dairo, O., & Odunewu, A. (2008). Convective hot air drying of blanched yam slices. International Journal of Food Science and Technology, 43, 1233–1238.CrossRefGoogle Scholar
  22. Togrul, I., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32.CrossRefGoogle Scholar
  23. Valencia-Pérez, A., García-Morales, M., Cárdenas-López, J., Herrera-Urbina, J., Rouzaud-Sanchez, O., & Ezquerra-Brauer, J. (2008). Effect of thermal process on connective tissue from jumbo squid (Dosidicus gigas) mantle. Food Chemistry, 107, 1371–1378.Google Scholar
  24. Vega-Gálvez, A., Miranda, M., Bilbao-Sainz, C., Lemus-Mondaca, R., & Uribe, E. (2008). Empirical modelling of drying process for apple (cv. Granny Smith) slices at different temperature. Journal of Food Processing and Preservation, 32, 972–986.CrossRefGoogle Scholar
  25. Villacis, M. F., Rastogi, N. K., & Balasubramaniam, V. M. (2008). Effect of high pressure on moisture and NaCl diffusion into turkey breast. LWT- Food and Science Technology, 41, 836–844.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Elsa Uribe
    • 1
  • Margarita Miranda
    • 1
  • Antonio Vega-Gálvez
    • 1
    Email author
  • Issis Quispe
    • 1
    • 2
  • Rodrigo Clavería
    • 1
  • Karina Di Scala
    • 3
    • 4
  1. 1.Department of Food EngineeringUniversidad de La SerenaLa SerenaChile
  2. 2.Área Agropecuaria y AcuícolaUniversidad Tecnológica de Chile-INACAPLa SerenaChile
  3. 3.Food Engineering Research GroupUniversidad Nacional de Mar del Plata, Facultad de IngenieríaMar del PlataArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas, CONICETBuenos AiresArgentina

Personalised recommendations