Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 2, pp 665–671 | Cite as

Listeria innocua Multi-target Inactivation by Thermo-sonication and Vanillin

  • Gabriela G. Gastélum
  • Raúl Avila-Sosa
  • Aurelio López-MaloEmail author
  • Enrique Palou
Original Paper

Abstract

Hurdle technology combining an emerging preservation technique such as low-frequency ultrasound is an alternative for processing juices that are susceptible to suffer a loss of quality due to traditional heat treatments. Predictive microbiology allows evaluation of the effectiveness of preservation techniques and its combinations in order to enhance both food quality and safety. Listeria innocua inactivation by thermo-sonication along with vanillin was investigated. Fermi model (R 2 adj= 0.970 ± 0.02) and surface response methodology (p < 0.05) were utilized in order to evaluate the survival of L. innocua to a multi-target treatment and to predict the interactions of studied techniques, high-intensity/low-frequency ultrasound (20 kHz/400 W) at selected wave amplitudes (60, 75, or 90 μm), temperature (40, 50, or 60 °C), and vanillin (200, 350, or 500 mg/kg). A combination of ultrasound, vanillin, and temperature enhanced L. innocua inactivation as described by Fermi parameters a and t c, which decreased as the studied effects increased. A multi-target inactivation effect was observed for a temperature range of 45–55 °C.

Keywords

Ultrasound Thermo-sonication Vanillin Listeria Hurdle technology 

Notes

Acknowledgments

The authors acknowledge financial support from the National Council for Science and Technology of Mexico (CONACyT Projects 44088: “Enfoque Multifactorial en la Inocuidad y Estabilidad de Alimentos Vegetales–Productos de Frutas” and 84859: “Combinación de Factores Físicos y Químicos para la Inactivación de Microorganismos Relacionados con Alimentos”) and Universidad de las Américas Puebla. Authors Gastélum and Avila-Sosa gratefully acknowledge financial support for their PhD studies from CONACyT and Universidad de las Américas Puebla.

References

  1. Alzamora, S. M., Tapia, M. S., & López-Malo, A. (2000). Overview. In Tapia Alzamora & Malo López (Eds.), Minimally processed fruits and vegetables. Fundamental aspects and applications (pp. 1–9). Maryland: Aspen Publishers.Google Scholar
  2. Barbosa-Cánovas, G. V., Pothakamury, U. R., Palou, E., & Swanson, B. G. (1998). Nonthermal preservation of foods. New York: Marcel Dekker.Google Scholar
  3. Bermúdez-Aguirre, D., Corradini, M. G., Mawson, R., & Barbosa-Cánovas, G. V. (2009). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative Food Science and Emerging Technologies, 10(2), 172–178.CrossRefGoogle Scholar
  4. Betts, G., & Everis, L. (2005). Modeling systems and impact on food microbiology. In Tapia Barbosa-Cánovas & F. Cano (Eds.), Novel food processing technologies (pp. 555–578). Boca Raton: CRC.Google Scholar
  5. Box, G., & Behnken, D. (1960). Some new three level design for study of quantitative variables. Technometrics, 2, 455–476.CrossRefGoogle Scholar
  6. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.CrossRefGoogle Scholar
  7. Char, C., Guerrero, S., Alzamora, S. M. (2005). Application of Weibull type distribution of resistances model to thermal resistance of Listeria innocua in vanillin containing orange juice. Proceedings of the 2nd Mercosur Congress on Chemical Engineering. 4th Mercosur Congress on Process Systems Engineering, 14–18 August 2005, Río de Janeiro, Brazil.Google Scholar
  8. Char, C., Guerrero, S., & Alzamora, S. M. (2009). Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control, 20(1), 67–74.CrossRefGoogle Scholar
  9. Char, C., Guerrero, S., Alzamora, S.M. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange Juice. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0155-x.
  10. Charles-Rodríguez, A. V., Nevárez-Moorillon, G. V., Zhang, Q. H., & Ortega-Rivas, E. (2007). Comparison of thermal processing and pulsed electric fields treatment in pasteurization of apple juice. Food and Bioproducts processing: Transactions of the Institutions of Chemical Engineers Part C, 85(1), 93–97.CrossRefGoogle Scholar
  11. Corte, F., De Fabrizio, S., Salvatori, D., & Alzamora, S. M. (2007). Survival of Listeria innocua in apple juice as affected in vanillin or potassium sorbate. Journal of Food Safety, 24(1), 1–15.CrossRefGoogle Scholar
  12. Ferrante, S., Guerrero, S., & Alzamora, S. M. (2007). Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. Journal of Food Protection, 70(8), 1850–1856.Google Scholar
  13. Guerrero, S., López-Malo, A., & Alzamora, S. M. (2001). Effect on ultrasound on the survival of Saccharomyces cerevisiae. Influence of temperature, pH and amplitude. Innovative Food Science and Emerging Technologies, 2(1), 31–39.CrossRefGoogle Scholar
  14. Jay, J., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology. New York: Springer.Google Scholar
  15. Knorr, D., Zenker, M., Volker, H., & Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15(5), 261–266.CrossRefGoogle Scholar
  16. Lebert, I., & Lebert, A. (2006). Quantitative prediction of microbial behaviour during food processing using an integrated modeling approach: A review. International Journal of Refrigeration, 29(6), 968–984.CrossRefGoogle Scholar
  17. Leistner, L. (1995). Principles and applications of hurdle technology. In G. W. Gould (Ed.), New methods of food preservation (pp. 1–20). Glasgow: Blackie Academic & Professional.CrossRefGoogle Scholar
  18. Leistner, L. (2007). Combined methods for food preservation. In S. Rahman (Ed.), Handbook of food preservation (pp. 867–893). Boca Raton: CRC.CrossRefGoogle Scholar
  19. López-Malo, A., & Palou, E. (2002). Ultraviolet light and food preservation. In G. V. Barbosa-Cánovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies (pp. 464–483). Boca Raton: CRC.Google Scholar
  20. López-Malo, A., Palou, E., Jiménez, M., Alzamora, S. M., & Guerrero, S. (2005). Multi-target fungal inactivation combining thermosonication and antimicrobials. Journal of Food Engineering, 67(1–2), 87–93.CrossRefGoogle Scholar
  21. McClements, D. J. (1995). Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology, 6(9), 293–299.CrossRefGoogle Scholar
  22. Mor-Mur, M., & Yuste, J. (2009). Emerging bacterial pathogens in meat and poultry: An overview. Food and Bioprocess Technology, 3, 24–35. doi: 10.1007/s11947-009-0189-8.CrossRefGoogle Scholar
  23. Pagán, R., Mañas, P., Palop, A., & Sala, F. J. (1999). Resistance of heat-shocked cells of Listeria monocytogenes to mano-sonication and mano-thermo-sonication. Letters in Applied Microbiology, 28, 71–75.CrossRefGoogle Scholar
  24. Peleg, M. (1997). Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equations. Critical Reviews in Food Science and Nutrition, 37(5), 471–490.CrossRefGoogle Scholar
  25. Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 8(3), 207–216.CrossRefGoogle Scholar
  26. Raso, J., & Barbosa-Cánovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265.CrossRefGoogle Scholar
  27. Rivas, A., Rodrigo, D., Martínez, A., Barbosa-Cánovas, G. V., & Rodrigo, M. (2006). Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. Food Science and Technology, 39(10), 1163–1170.Google Scholar
  28. Rocourt, J., & Cossart, P. (1997). Listeria monocytogenes. In M. P. Doyle, L. R. Beauchat, & T. J. Montville (Eds.), Food microbiology: Fundamentals and frontiers (pp. 337–352). Washington: ASM Press.Google Scholar
  29. Sala, F. J., Burgos, J., Condón, S., López, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In G. W. Gould (Ed.), New methods of food preservation. Glasgow: Blackie Academic & Professional.Google Scholar
  30. Salleh-Mack, S. Z., & Roberts, J. S. (2007). Ultrasound pasteurization: The effects of temperature, soluble solids, organic acids and pH on the inactivation of Escherichia coli ATCC 25922. Ultrasonics Sonochemistry, 14(3), 323–329.CrossRefGoogle Scholar
  31. Tapia, M. S., Alzamora, S. M., & Welti-Chanes, J. (1996). Combination of preservation factors applied to minimal processing of foods. Critical Reviews in Food Science and Nutrition, 36(6), 629–650.CrossRefGoogle Scholar
  32. Tiwari, B. K., O’Donell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food and Bioprocess Technology, 2, 109–114. doi: 10.1007/s11947-008-0156-9.CrossRefGoogle Scholar
  33. Torley, P. J., & Bhandari, B. R. (2007). Ultrasound in food processing and preservation. In S. Rahman (Ed.), Handbook of food preservation (pp. 713–732). Boca Raton: CRC.CrossRefGoogle Scholar
  34. Ugarte-Romero, E., Feng, H., & Martin, S. (2007). Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. Journal of Food Science, 72(4), 103–107.CrossRefGoogle Scholar
  35. Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80(2), 509–516.CrossRefGoogle Scholar
  36. Walkling-Ribeiro, M., Noci, F., Riener, J., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2009). The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food and Bioprocess Technology, 2, 422–430. doi: 10.1007/s11947-007-0045-7.CrossRefGoogle Scholar
  37. Whiting, R. C., & Buchanan, R. L. (1994). Microbial modeling. Food Technology, 48(6), 113–119.Google Scholar
  38. Wong, E., Pérez, A. M., & Vaillant, F. (2008). Combined effect of osmotic pressure and sonication on the reduction of Salmonella spp. in concentrated orange juice. Journal of Food Safety, 28, 499–513.CrossRefGoogle Scholar
  39. Wrigley, D. M., & Llorca, N. G. (1992). Decrease of Salmonella Thyphimurium in skim milk and egg by heat and ultrasonic wave treatment. Journal of Food Protection, 55(9), 678–680.Google Scholar
  40. Zheng, L., & Sun, D. W. (2006). Innovative applications of power ultrasound during food freezing processes—A review. Trends in Food Science & Technology, 17(1), 16–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Gabriela G. Gastélum
    • 1
  • Raúl Avila-Sosa
    • 1
  • Aurelio López-Malo
    • 1
    Email author
  • Enrique Palou
    • 1
  1. 1.Departamento de Ingeniería Química, Alimentos y AmbientalUniversidad de las Américas PueblaCholulaMéxico

Personalised recommendations