Food and Bioprocess Technology

, Volume 4, Issue 1, pp 39–47 | Cite as

Nanotechnology for the Food and Bioprocessing Industries

Review Paper


Several complex set of engineering and scientific challenges in the food and bioprocessing industries for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; and nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. We review the background about the potential of nanotechnology, provide an overview of the current and future applications of nanotechnology relevant to food and bioprocessing industry, and identify the societal implications for successful implementation of nanotechnology.


Nanotechnology Food Bioprocessing Nanosensors Antimicrobial packaging Nanoencapsulation 


  1. Advantage Magazine. (2004). Nanotechnology and Food Packaging. = 857. Accessed 20 June 2009.
  2. Auweter, H., Bohn, H., Haberkorn, H., Horn, D., Luddecke, E., & Rauschenberger, V. (1999). Production of carotenoid preparations in the form of coldwater-dispersible powders, and the use of the novel carotenoid preparations. US Patent 5968251 (in English).Google Scholar
  3. BASF. (2009). New biodegradable plastic. Accessed 20 Oct 2009.
  4. Bordes, P., Pollet, E., & Averou, L. (2009). Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125–155.CrossRefGoogle Scholar
  5. Brody, A. L. (2003). Nano food packaging technology. Food Technology, 57(12), 52–54.Google Scholar
  6. Buonocore, G. G., Conte, A., Corbo, M. R., Sinigaglia, M., & Del Nobile., M. A. (2005). Mono- and multilayer active films containing lysozyme as antimicrobial agent. Innovative Food Science and Emerging Technologies, 6, 459–464.Google Scholar
  7. Burdo, O. (2005). Nanoscale effects in food production technologies. Journal of Engineering Physics and Thermophysics, 78(1), 90–97.CrossRefGoogle Scholar
  8. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants, 25(3), 241–258.CrossRefGoogle Scholar
  9. Chen, H., Weiss, J., & Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technology, 60(3), 30–36.Google Scholar
  10. Cheng, Y., Liua, Y., Huanga, J., Lia, K., Zhang, W., Xiana, Y., et al. (2009). Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta, 77(4), 1332–1336.CrossRefGoogle Scholar
  11. Coating & Converting Magazine. (2008). Packaging’s pulse. Accessed 20 June 2009.
  12. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(2), 90–103.CrossRefGoogle Scholar
  13. Contreras, M. P., Avula, R. Y., & Singh, R. K. (2009). Evaluation of nano zinc (ZnO) for surface enhancement of ATR–FTIR spectra of butter and spread. Food and Bioprocess Technology. doi:10.1007/s11947-009-0237-4.Google Scholar
  14. CSIRO. (2006). Farm factories: harvesting bioplastics. Accessed 20 June 2009.
  15. CTC Nanotechnology. (2009). WEITEC bio cleaner. Available at: Accessed 20 June 2009.
  16. Donofrio, R. (2006). Rapid safety testing of food nanomaterials using high content screening and zebrafish model. In Nano and Micro Technologies in the Food and Health Food Industries Conference, 25-26 October 2006, Amsterdam, Netherlands.Google Scholar
  17. Dunn, J. (2004). A Mini Revolution. Food Manufacture, London, UK. Accessed 23 April 2009.
  18. European Commission. (2004). Communication of the European Commission: towards a European strategy for nanotechnology, Brussels, Belgium. Accessed 01 June 2009.
  19. Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427–1432.CrossRefGoogle Scholar
  20. Forbes. (2005). Safer and guilt free nano-foods, New York NY, USA.
  21. Fu, J., Park, B., Siragusa, G., Jones, L., Tripp, R., Zhao, Y., et al. (2008). An Au/Si hetero-nanorod based biosensor for Salmonella detection. Nanotechnology, 19, 1–7.Google Scholar
  22. Gadang, V. P., Hettiarachchy, N. S., Johnson, M. G., & Owens, C. (2008). Evaluation of antibacterial activity of whey protein isolate coating incorporated with Nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. Journal of Food Science, 73(8), 389–394.CrossRefGoogle Scholar
  23. Garti, N., & Benichou, A. (2004). Recent developments in double emulsions for food applications. In: Friberg, Larsson, Sjoblom (ed) Food Emulsions (pp. 352-412). New York, USA: Marcel Dekker.Google Scholar
  24. Graveland-Bikker, J. F., & de Kruif, C. G. (2006). Unique milk protein based nanotubes: food and nanotechnology meet. Trends in Food Science & Technology, 17(5), 196–203.CrossRefGoogle Scholar
  25. Helmut Kaiser Consultancy. (2004). Nanotechnology in food and food processing industry worldwide 2008-2010-2015 Report. Zurich, Switzerland.Google Scholar
  26. Horner, S. R., Mace, C. R., Rothberg, L. J., & Miller, B. L. (2006). A proteomic biosensor for enteropathogenic E. coli. Biosensors and Bioelectronics, 21(8), 1659–1663.CrossRefGoogle Scholar
  27. Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279, 71–76.CrossRefGoogle Scholar
  28. Joseph, T., & Morrison, M. (2006). Nanotechnology in agriculture and food, Düsseldorf, Germany. ure%20and%20food.pdf?08122006200524. Accessed 17 June 2009.
  29. Kailasapathy, K., & Rybka, S. (1997). L. acidophilus and Bifidobacterium spp.—their therapeutic potential and survival in yoghurt. Australian Journal of Dairy Technology, 52, 28–35.Google Scholar
  30. Kampers, F. (2007). Food nanoscience in the Netherlands. In: IFT International Food Nanoscience Conference, 1 August 2007, Chicago, USA.Google Scholar
  31. Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2009). Influence of surfactant type and concentration on electrospinning of chitosan–poly(Ethylene Oxide) blend nanofibers. Food Biophysics. doi:10.1007/s11483-009-9119-6.Google Scholar
  32. Li, Y., YHT, C. U., & Luo, D. (2005). Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnology, 23, 885–889.CrossRefGoogle Scholar
  33. Lin, L., Peng, C., Wang, H., Chuang, C., Yu, T., Chen, K., et al. (2008). Acceleration of maturity of young sorghum (kaoliang) spirits by linking nanogold photocatalyzed process to conventional biological aging—a kinetic approach. Food and Bioprocess Technology, 1, 234–245.CrossRefGoogle Scholar
  34. Manufuture. (2006). Vision 2020 and Strategic Research Agenda of the European Agricultural Machinery Industry and Research Community for the 7th Framework Programme for Research of the European Community, Brussels, Belgium. Accessed 01 May 2009.
  35. Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B., et al. (2007). The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occupational and Environmental Medicine, 64, 609–615.CrossRefGoogle Scholar
  36. Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301(5641), 1884–1886.CrossRefGoogle Scholar
  37. Neethirajan, S., Freund, M. S., Shafai, C., Jayas, D. S., & Thomson, D. J. (2009a). Development of carbon dioxide sensor for agri-food industry. United States Provisional Patent No2009-61/23891 (in English).Google Scholar
  38. Neethirajan, S., & Jayas, D. S. (2007). Sensors for grain storage. In: 2007 ASABE Annual International Meeting, 17-20 June 2007, Minneapolis, USA.Google Scholar
  39. Neethirajan, S., Gordon, R., & Wang, L. (2009). Potential of silica bodies (phytoliths) for nanotechnology. Trends in Biotechnology, 27(8), 461–467.CrossRefGoogle Scholar
  40. O’Riordan, K., Andrews, D., Buckle, K., & Conway, P. (2001). Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. Journal of Applied Microbiology, 91(6), 1059–1066.CrossRefGoogle Scholar
  41. Oxonica. (2007). Platform detection technology. = 40 Accessed 20 Oct 2009.
  42. Plexus Institute. (2006). New nanotechnology food research—if it glows don’t eat it. Accessed 20 Apr 2009.
  43. Renton, A. (2006). Welcome to the world of nanofoods. London, UK: the observer.,,1971266,00.html. Accessed 17 June 2009.
  44. Rhim, J., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433.CrossRefGoogle Scholar
  45. Rivett, J., & Speer, D. V. (2009). Oxygen scavenging film with good interplay adhesion. US Patent 75141512 (in English).Google Scholar
  46. Robinson, D. K. R., & Morrison, M. (2009). Nanotechnology developments for the agrifood sector –report of the ObservatoryNano. Accessed 2 June 2009.
  47. Roco, M. C. (2002). Nanoscale science and engineering for agriculture and food systems. Washington: National Planning Workshop, USDA/CSREES.Google Scholar
  48. Roco, M., & Bainbridge, W. S. (2001). Societal implications of nanoscience and nanotechnology. Dordrecht: Kluwer Academic Publishers.Google Scholar
  49. Rodriguez, A., Nerin, C., & Batlle, R. (2008). New cinnamon-based active paper packaging against Rhizopusstolonifer food spoilage. Journal of Agricultural and Food Chemistry, 56(15), 6364–6369.CrossRefGoogle Scholar
  50. Rojas-Grau, M. A., Bustillos, A. R. D., Friedman, M., Henika, P. R., Martin-Belloso, O., & Mc Hugh, T. H. (2006). Mechanical, barrier and antimicrobial properties of apple puree edible films containing plant essential oils. Journal of Agricultural and Food Chemistry, 54, 9262–9267.CrossRefGoogle Scholar
  51. Ruengruglikit, C., Kim, H., Miller, R. D., & Huang, Q. (2004). Fabrication of nanoporous oligonucleotide microarrays for pathogen detection and identification. Polymer Preprints, 45, 526.Google Scholar
  52. Semo, E., Kesselman, W., Danino, D., & Livney, Y. D. (2007). Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloids, 21(6), 936–942.CrossRefGoogle Scholar
  53. Shefer, A. (2008). The application of nanotechnology in the food industry. Accessed 20 December 2008.
  54. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.CrossRefGoogle Scholar
  55. Stutzenberger, F. J., Latour, R. A., Sun, Y., & Tzeng, T. (2007). Adhesin-specific nanoparticles and process for using same. US Patent No 20070184120 (in English).Google Scholar
  56. Wenner, M. (2008). Magnifying taste: new chemicals trick the brain into eating less. Scientific American Magazine, 96-99.Google Scholar
  57. Zhang, H., Elghanian, R., Demers, L., Amro, N., Disawal, S., & Cruchon-dupeyrat, S. (2009). Direct-write nanolithography method of transporting ink with an elastomeric polymer coated nanoscopic tip to form a structure having internal hollows on a substrate. US Patent 7491422 (in English).Google Scholar
  58. Zhao, X., Hilliard, L. R., Mechrey, S. J., Wang, Y., Bagwe, R. P., Jin, S., et al. (2004). A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences, 101, 15027–15032.CrossRefGoogle Scholar
  59. Zhao, R., Torley, P., & Halley, P. J. (2008). Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. Journal of Material Science, 43, 3058–3071.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biosystems EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations