Food and Bioprocess Technology

, Volume 4, Issue 2, pp 163–185 | Cite as

Drying of Exotic Tropical Fruits: A Comprehensive Review

  • Fabiano A. N. Fernandes
  • Sueli Rodrigues
  • Chung Lim Law
  • Arun S. Mujumdar
Review Paper


This paper provides a capsule overview of recent experimental studies dealing with the drying of a large assortment of tropical and subtropical fruits, also called “exotic” fruits. The term exotic includes a number of tropical fruits that are not yet commonly found in global markets but do have the potential to do so in view of their appearance, taste, and textural and nutritional quality parameters. As the consumer is seeking diverse tastes and flavors without compromising on quality, it is logical to expect the market for dried exotic fruits to increase over the next decade. This review covers diverse drying techniques, drying kinetics, and key quality parameters of dried fruits.


Exotic fruits Drying Quality Nutrition Antioxidants Osmotic dehydration Pulsed vacuum Solar drying Ultrasound 



The authors thank the Brazilian funding institutes CNPq and CAPES; Ministry of Science, Technology and Innovation, Malaysia for their financial support.


  1. Abers, J. E., & Wrolstad, R. E. (1979). Causative factors of colour deterioration in strawberry preserves during processing and storage. Journal of Food Science, 44, 75–78.CrossRefGoogle Scholar
  2. Abu-Goukh, A. A., & Abu-Sarra, A. F. (1993). Compositional changes during mango fruit ripening. University of Khartoum Journal of Agricultural Sciences, 1, 33–51.Google Scholar
  3. Adu, B., & Otten, L. (1996). Effect of increasing hygroscopicity on themicrowave heating of solid foods. Journal of Food Engineering, 27, 35–44.CrossRefGoogle Scholar
  4. Almeida, F. A. C., Ribeiro, C. F. A., Tobinaga, S., & Gomes, J. P. (2005). Otimização do processo de secagem osmótica na obtenção de produtos secos da manga Tommy Atkins. Revista Brasileira de Engenharia Agrícola e Ambiental, 9, 576–584.CrossRefGoogle Scholar
  5. Alves, D. G., Barbosa, J. L., Jr., Antonio, G. C., & Murr, F. E. X. (2005). Osmotic dehydration of acerola fruit (Malpighia punicifolia L.). Journal of Food Engineering, 68, 99–103.CrossRefGoogle Scholar
  6. Amellal, H., & Benamara, S. (2008). Vacuum drying of common date pulp cubes. Drying Technology, 26, 378–382.CrossRefGoogle Scholar
  7. Andrade, S. A. C., Barros Neto, B., Salgado, S. M., & Guerra, N. B. (2007). Influência de revestimentos comestíveis na redução de ganho de sólidos em jenipapos desidratados osmoticamente. Ciência e Tecnologia de Alimentos, 27, 39–43.CrossRefGoogle Scholar
  8. Andrés, A., Fito, P., Heredia, A., & Rosa, E. M. (2007). Combined drying technologies for development of high-quality shelf-stable mango products. Drying Technology, 25, 1857–1866.CrossRefGoogle Scholar
  9. Attabhanyo, R., Ngramsomsut, K., Attabhanyo, A., Arrayarungsarit, S., Chaowanapoonpon, Y., & Kitchaijaroon, J. (1998). Longan process industry. Faculty of Agriculture, Chiang Mai University.Google Scholar
  10. Avila, I. M. L. B., & Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour in peach puree. Journal of Food Engineering, 39, 161–166.CrossRefGoogle Scholar
  11. Azoubel, P. M., & Murr, F. E. X. (2003). Optimisation of osmotic dehydration of cashew apple (Anacardium occidentale L.) in sugar solutions. Food Science and Technology International, 9, 427–433.CrossRefGoogle Scholar
  12. Azuara, E., Flores, E., & Beristain, C. I. (2009). Water diffusion and concentration profiles during osmodehydration and storage of apple tissue. Food and Bioprocess Technology, 2, 361–367.CrossRefGoogle Scholar
  13. Bakshi, J. C., & Singh, P. (1974). The ber—A good choice for semi-arid and marginal soils. Indian Horticulture, 19, 27–30.Google Scholar
  14. Barreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33, 359–371.CrossRefGoogle Scholar
  15. Bashir, H. A., & Abu-Goukh, A. A. (2003). Compositional changes during guava fruit ripening. Food Chemistry, 80, 557–563.CrossRefGoogle Scholar
  16. Bellagha, S., Sahli, A., & Farhat, A. (2008). Desorption isotherms and isosteric heat of three Tunisian date cultivars. Food Bioprocess Technol, 1, 270–275.CrossRefGoogle Scholar
  17. Block, G., & Langseth, L. (1994). Antioxidant vitamins and disease prevention. Food Technology, 48, 80–84.Google Scholar
  18. Brito, E. S., & Narain, N. (2002). Physical and chemical characteristics of sapota fruit at different stages of maturation. Pesquisa Agropecuária Brasileira, 37, 567–572.CrossRefGoogle Scholar
  19. Cao, H., Zhang, M., Mujumdar, A. S., Du, W. H., & Sun, J. C. (2006). Optimization of osmotic dehydration of kiwifruit. Drying Technology, 24, 89–94.CrossRefGoogle Scholar
  20. Ceylan, I., Aktas, M., & Dogan, H. (2007). Mathematical modeling of drying characteristics of tropical fruits. Applied Thermal Engineering, 27, 1931–1936.CrossRefGoogle Scholar
  21. Chatchavalchokchai, N. (1987). Effect of some ruminants on seed quality of Phyllanthus emblica L., Elaeocarpus madopetalous P., Spondias pinnata K. and Terminalia chebula R. MSC thesis, Kasetsart University, Thailand.Google Scholar
  22. Chen, S. C., Colins, J. L., McCarty, I. E., & Young, M. R. (1971). Blanching of white potatoes by microwave energy followed by boiling water. Journal of Food Science, 36, 742–743.CrossRefGoogle Scholar
  23. Chen, J. P., Tai, C. Y., & Chen, B. H. (2007). Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.). Food Chemistry, 100, 1005–1010.CrossRefGoogle Scholar
  24. Chin, S. T., Nazimah, S. A. H., Quek, S. Y., Che Man, Y., Rahman, R. A., & Mat Hashim, D. (2008). Changes of volatiles’ attribute in durian pulp during freeze- and spray-drying process. LWT–Food Science and Technology, 41, 1899–1905.Google Scholar
  25. Chong, C. H., Law, C. L., Cloke, M., Luqman Chuah, A., & Daud, W. R. W. (2008a). Drying kinetics, texture, color, and determination of effective diffusivities during sun drying of chempedak. Drying Technology, 26, 1286–1293.CrossRefGoogle Scholar
  26. Chong, C. H., Law, C. L., Cloke, M., Luqman Chuah, A., & Daud, W. R. W. (2008b). Drying kinetics and product quality of dried chempedak. Journal of Food Engineering, 88, 522–527.CrossRefGoogle Scholar
  27. Chong, C. H., Law, C. L., Cloke, M., Luqman Chuah, A., & Daud, W. R. W. (2009). Drying models and quality analysis of sun-dried ciku. Drying Technology, 27, 985–992.CrossRefGoogle Scholar
  28. Chua, K. J., Chou, S. K., Ho, J. C., Mujumdar, A. S., & Hawlader, M. N. A. (2000). Cyclic air temperature drying of guava pieces: Effects on moisture and ascorbic acid contents. Transactions IChemE, 78, Part C, pp. 72–78.Google Scholar
  29. Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., Chou, S. K., & Ho, J. C. (2001). Batch drying of banana pieces—Effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Research International, 34, 721–731.CrossRefGoogle Scholar
  30. Corzo, O., Bracho, N., & Alvarez, C. (2008). Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of Food Engineering, 87, 479–484.CrossRefGoogle Scholar
  31. Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2010). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimization and microstructure evaluation. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0220-0.
  32. Cunha, R. L., Cruz, A. G., & Menegalli, F. C. (2006). Effects of operating conditions on the quality of mango pulp dried in a spout fluidized bed. Drying Technology, 24, 423–432.CrossRefGoogle Scholar
  33. Datta, A. K. (2001). Mathematical modeling of microwave processing of foods: An overview. In Irudayaraj (Ed.), Food processing operation modeling: Design and analysis (pp. 147–187). New York: Marcel Dekker.Google Scholar
  34. Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.CrossRefGoogle Scholar
  35. Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of Amelie mango (Mangifera indica L cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineering, 88, 429–437.CrossRefGoogle Scholar
  36. Dowling, C. F., & Morton, J. F. (1987). Avocado. In J. F. Morton (Ed.), Fruits of warm climates. Miami: Morton.Google Scholar
  37. Doymaz, I. (2004). Pretreatment effect on sun drying of mulberry fruits (Morus alba L.). Journal of Food Engineering, 65, 205–209.CrossRefGoogle Scholar
  38. Doymaz, I. (2006). Sun drying of figs: An experimental study. Journal of Food Engineering, 71, 403–407.CrossRefGoogle Scholar
  39. Falade, K. O., & Abbo, E. S. (2007). Air-drying and rehydration characteristics of date palm (Phoenix dactylifera L) fruits. Journal of Food Engineering, 79, 724–730.CrossRefGoogle Scholar
  40. Falade, K. O., & Adelakun, T. A. (2007). Effect of pre-freezing and solutes on mass transfer during osmotic dehydration and colour of oven-dried African star apple during storage. International Journal of Food Science and Technology, 42, 394–402.CrossRefGoogle Scholar
  41. Fathi, M., Mohebbi, M., & Razavi, S. M. A. (2010). Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0222-y.
  42. Feng, H., & Tang, J. (1998). Microwave finish drying of diced apples in a spouted bed. Journal of Food Science, 63, 679–683.CrossRefGoogle Scholar
  43. Feng, H., Tang, J., Mattinson, D. S., & Fellman, J. K. (1999). Microwave and spouted bed drying of blueberries: The effect of drying and pretreatment methods on physical properties and retention of flavor volatiles. Journal of Food Processing and Preservation, 23, 463–479.CrossRefGoogle Scholar
  44. Fereidoon, S., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32, 67–103.CrossRefGoogle Scholar
  45. Fernandes, F. A. N., & Rodrigues, S. (2007a). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82, 207–214.CrossRefGoogle Scholar
  46. Fernandes, F. A. N., & Rodrigues, S. (2007b). Use of ultrasound as pretreatment for dehydration of melons. Drying Technology, 25, 1791–1796.CrossRefGoogle Scholar
  47. Fernandes, F. A. N., & Rodrigues, S. (2008a). Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26, 1509–1516.CrossRefGoogle Scholar
  48. Fernandes, F. A. N., & Rodrigues, S. (2008b). Dehydration of sapota (Acharas sapota L.) using ultrasound as pretreatment. Drying Technology, 26, 1232–1237.CrossRefGoogle Scholar
  49. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008a). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT–Food Science and Technology, 41, 604–610.Google Scholar
  50. Fernandes, F. A. N., Linhares, F. E., Jr., & Rodrigues, S. (2008b). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15, 1049–1054.CrossRefGoogle Scholar
  51. Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008c). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1, 339–345.CrossRefGoogle Scholar
  52. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90, 186–190.CrossRefGoogle Scholar
  53. Feskanich, D., Ziegler, R. G., Michaud, D. S., Giovannucci, E. L., Speizer, F. E., & Willett, W. C. (2000). Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute, 92, 1812–1823.CrossRefGoogle Scholar
  54. Fleuriet, A., & Macheix, J. J. (2003). Phenolic acids in fruits and vegetables. In C. A. Rice-Evans & L. Packer (Eds.), Flavonoids in health and disease. New York: Marcel Dekker.Google Scholar
  55. Fuente-Blanco, S., Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. Á. (2006). Food drying process by power ultrasound. Ultrasonics Sonochemistry, 44, e523–e527.Google Scholar
  56. Ganjloo, A., Rahman, R. A., Osman, A., Bakar, J., & Bimakr, M. (2010). Kinetics of crude peroxidase inactivation and color changes of thermally treated seedless guava (Psidium guajava L). Food and Bioprocess Technology. doi: 10.1007/s11947-009-0245-4.
  57. Garcia-Viguera, C., Zafrilla, P., Romero, F., Abellan, P., Artes, F., & Tomas-Barberan, F. A. (1999). Color stability of strawberry jam as affected by cultivar and storage temperature. Journal of Food Science, 64, 243–247.CrossRefGoogle Scholar
  58. Giraldo-Zuñiga, A. D., Arévalo-Pinedo, A., Rodrigues, R. M., Lima, C. S. S., & Feitosa, A. C. (2006). Kinetic drying experimental data and mathematical model for jackfruit (Artocarpus integrifolia) slices. Ciencia Tecnología Alimentaria, 5, 89–92.CrossRefGoogle Scholar
  59. Goksu, E. I., Sumnu, G., & Esin, A. (2005). Effect of microwave on fluidized bed drying of macaroni beads. Journal of Food Engineering, 66, 463–468.CrossRefGoogle Scholar
  60. Gong, Z., Zhang, M., Mujumdar, A. S., & Sun, J. (2008). Spray drying and agglomeration of instant bayberry powder. Drying Technology, 26, 116–121.CrossRefGoogle Scholar
  61. Gordon, M. H. (1996). Dietary antioxidants in disease prevention. Natural Product Reports, 13, 265–273.CrossRefGoogle Scholar
  62. Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R., & Ilyas, S. M. (2006). Thin-layer drying kinetics of raw mango slices. Biosystems Engineering, 95, 43–49.CrossRefGoogle Scholar
  63. Guan, Y. G., Zhang, B. S., Yu, S. J., Wang, X. R., Xu, X.B., Wang, J., Han, Z., Zhang, P. J., & Lin, H. (2010). Effects of ultrasound on a glycin-glucose model system—A means of promoting Maillard reaction. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0251-6.
  64. Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16, 33–50.CrossRefGoogle Scholar
  65. Halliwell, B., Murcia, M. A., Chirico, S., & Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: What they do and how they work? Critical Reviews in Food Science and Nutrition, 35, 7–20.CrossRefGoogle Scholar
  66. Hawlader, M. N. A., Perera, C. O., & Tian, M. (2006a). Comparison of the retention of 6-gingerol in drying of ginger under modified atmosphere heat pump drying and other drying methods. Drying Technology, 24, 51–56.CrossRefGoogle Scholar
  67. Hawlader, M. N. A., Perera, C. O., Tian, M., & Chng, K. J. (2006b). Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74, 392–401.CrossRefGoogle Scholar
  68. Hawlader, M. N. A., Perera, C. O., Tian, M., & Yeo, K. L. (2006c). Drying of guava and papaya: Impact of different drying methods. Drying Technology, 24, 77–87.CrossRefGoogle Scholar
  69. Hu, Q., Zhang, M., Mujumdar, A. S., Du, W., & Sun, J. (2006). Effects of different drying methods on the quality changes of granular edamame. Drying Technology, 24, 1025–1032.CrossRefGoogle Scholar
  70. Ibarz, A., Pagan, J., & Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of Food Engineering, 39, 415–422.CrossRefGoogle Scholar
  71. Ibrahim, K. E., Abu-Goukh, A. A., & Yusuf, K. S. (1994). Use of ethylene, acetylene and ether on banana fruit ripening. University of Khartoum Journal of Agricultural Sciences, 2, 73–92.Google Scholar
  72. Ito, A. P., Tonon, R. V., Park, K. J., & Hubinger, M. M. (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically dehydrated mango slices. Drying Technology, 25, 1769–1777.CrossRefGoogle Scholar
  73. Jamradloedluk, J., Nathakaranakule, A., Soponronnarit, S., & Prachayawarakorn, S. (2007). Influences of drying medium and temperature on drying kinetics and quality attributes of durian chip. Journal of Food Engineering, 78, 198–205.CrossRefGoogle Scholar
  74. Jangam, S. V., Joshi, V. S., Mujumdar, A. S., & Thorat, B. N. (2008). Studies on dehydration of sapota (Achras zapota). Drying Technology, 26, 369–377.CrossRefGoogle Scholar
  75. Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Boonrod, Y., Haewsungcharern, M., et al. (2009). Solar drying of peeled longan using a side loading type solar tunnel dryer: Experimental and simulated performance. Drying Technology, 27, 595–605.CrossRefGoogle Scholar
  76. Karabulut, O. A., & Baykal, N. (2002). Evaluation of the use of microwave power for the control of postharvest diseases of peaches. Postharvest Biology and Technology, 26, 237–240.CrossRefGoogle Scholar
  77. Kaya, A., Aydin, O., & Dincer, I. (2008). Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia deliciosa Planch). Journal of Food Engineering, 88, 323–330.CrossRefGoogle Scholar
  78. Khraisheh, M. A. M., McMinn, W. A. M., & Magee, T. R. A. (2004). Quality and structural changes in starchy foods during microwave and convective drying. Food Research International, 37, 497–503.CrossRefGoogle Scholar
  79. Kingsly, A. R. P., Meena, H. R., Jain, R. K., & Singh, D. B. (2007). Shrinkage of ber (Zizyphus mauritian L.) fruits during sun drying. Journal of Food Engineering, 79, 6–10.CrossRefGoogle Scholar
  80. Krokida, M. K., & Maroulis, Z. B. (1999). Effect of microwave drying on some quality properties of dehydrated products. Drying Technology, 17, 449–466.CrossRefGoogle Scholar
  81. Law, C. L., & Mujumdar, A. S. (2008). Dehydration of fruits and vegetables. In A. S. Mujumdar (Ed.), Guide to industrial drying (pp. 223–249). India: Three S Colors.Google Scholar
  82. Law, C. L., Waje, S., Thorat, B. N., & Mujumdar, A. S. (2008). Innovation and recent advancement in drying operation for postharvest processes. Stewart Postharvest Review, 4, 1–23.CrossRefGoogle Scholar
  83. Lee, H. S., & Coates, G. A. (1999). Partition of vitamin C activity in commercial citrus products. Nahrung-Food, 43, 343–344.CrossRefGoogle Scholar
  84. Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76, 69–75.CrossRefGoogle Scholar
  85. Leontowicz, H., Leontowicz, M., Drzewiecki, J., Haruenkit, R., Poovarodom, S., Park, Y. S., et al. (2006). Bioactive properties of snake fruit (Salacca edulis Reinw) and mangosteen (Garcinia mangostana) and their influence on plasma lipid profile and antioxidant activity in rats fed cholesterol. European Food Research and Technology, 223, 697–703.CrossRefGoogle Scholar
  86. Lestari, R., Keil, S. H., & Ebert, G. (2003). Variation in fruit quality of different salak genotypes (Salacca zalacca (Gaert.) Voss) from Indonesia. In Deutscher Tropentag—Technological and Institutional Innovations for Sustainable Rural Development, Göttingen, Germany.Google Scholar
  87. Lim, Y. Y., Lim, T. T., & Tee, J. J. (2007). Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry, 103, 1003–1008.CrossRefGoogle Scholar
  88. Lopez, A., Pique, M. T., Boatella, J., Romero, A., Ferran, A., & Garcia, J. (1997). Influence of drying conditions on the hazelnut quality: III. Browning. Drying Technology, 15, 989–1002.CrossRefGoogle Scholar
  89. Lozano, J. E., & Ibarz, A. (1997). Colour changes in concentrated fruit pulp during heating at high temperatures. Journal of Food Engineering, 31, 365–373.CrossRefGoogle Scholar
  90. Madamba, P. S., & Lopez, R. I. (2002). Optimization of the osmotic dehydration of mango (Mangifera indica L.) slices. Drying Technology, 20, 1227–1242.CrossRefGoogle Scholar
  91. Marques, L. G., Silveira, A. M., & Freire, J. T. (2006). Freeze-drying characteristics of tropical fruits. Drying Technology, 24, 457–463.CrossRefGoogle Scholar
  92. Marques, L. G., Ferreira, M. C., & Freire, J. T. (2007). Freeze-drying of acerola (Malpighia glabra L.). Chemical Engineering and Processing, 46, 451–457.CrossRefGoogle Scholar
  93. Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169–175.CrossRefGoogle Scholar
  94. Mason, T. J. (1998). Power ultrasound in food processing—The way forward. In M. J. W. Povey & T. Mason (Eds.), Ultrasounds in food processing (pp. 104–124). Glasgow: Blackie Academic and Professional.Google Scholar
  95. Methakhup, S., Chiewchan, N., & Devahastin, S. (2005). Effect of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT Food Science and Technology, 38, 579–587.CrossRefGoogle Scholar
  96. Montri, N. (1998) In vitro propagation of Phyllanthus emblica L. M.Sc thesis, Kasetsart University, Thailand.Google Scholar
  97. Morton, J. F. (1987a). Fruits of warm climates. Miami: Morton.Google Scholar
  98. Morton, J. F. (1987b). Sapodilla. In J. F. Morton (Ed.), Fruits of warm climates (pp. 393–398). Miami: Creative Resources Systems.Google Scholar
  99. Mujumdar, A. S. (2000). Classification and selection of industrial dryers. In Devahastin (Ed.), Practical guide to industrial drying (pp. 37–71). Montreal: Exergex Corp.Google Scholar
  100. Mujumdar, A. S. (2001). Recent developments in the drying technologies for the production of particulate materials. In Levy & Kalman (Eds.), Handbook of powder technology, vol. 10 (pp. 533–545). New York: Elsevier.Google Scholar
  101. Mujumdar, A. S. (2006). Some recent developments in drying technologies appropriate for postharvest processing. International Journal of Postharvest Technology and Innovation, 1, 76–92.CrossRefGoogle Scholar
  102. Mujumdar, A. S. (2007a). Principles, classification and selection of dryers. In Mujumdar (Ed.), Handbook to industrial drying (3rd ed., pp. 3–32). New York: CRC.Google Scholar
  103. Mujumdar, A. S. (2007b). Handbook of industrial drying. New York: CRC.Google Scholar
  104. Mujumdar, A. S. (2007c). An overview of innovation in industrial drying: Current status and R&D needs. Transport Porous Media, 66, 3–18.CrossRefGoogle Scholar
  105. Mujumdar, A. S. (2008a) Classification and selection of industrial dryers. In A. S. Mujumdar (Ed.), Guide to industrial drying (pp. 23–36). India: Three S Colors.Google Scholar
  106. Mujumdar, A. S. (2008b). Guide to industrial drying. Singapore.Google Scholar
  107. Mujumdar, A. S., & Devahastin, S. (2000). Fundamental principles of drying. In S. Devahastin (Ed.), Mujumdar’s practical guide to industrial drying (pp. 1–22). Brossard: Exergex Corp.Google Scholar
  108. Mujumdar, A. S., & Menon, A. S. (1995). Drying of solids: Principles, classification, and selection of dyers. In A. S. Mujumdar (Ed.), Handbook of industrial drying (pp. 1–40). New York: Marcel Dekker.Google Scholar
  109. Mujumdar, A. S., & Passos, M. L. (2000). Drying: Innovative technologies and trends in research and development. In S. Mujumdar, S. Suvachittanont (Eds.), Developments in drying 2000, vol. I (pp. 235–268). Singapore.Google Scholar
  110. Murthy, Z. V. P., & Joshi, D. (2007). Fluidized bed drying of aonla (Emblica officinalis). Drying Technology, 25, 883–889.CrossRefGoogle Scholar
  111. Nieto, A., Castro, M. A., & Alzamora, S. M. (2001). Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango. Journal of Food Engineering, 50, 175–185.CrossRefGoogle Scholar
  112. Nishizawa, M., Nademoto, Y., Sastrapradja, S., Shiro, M., & Hayashi, Y. (1988). Dukunolide D, E and F: New tetranortriterpenoids from the seeds of Lansium domesticum. Phytochemistry, 27, 237–239.CrossRefGoogle Scholar
  113. Nishizawa, M., Emura, M., Yamada, H., Shiro, M., Chairul, H. Y., & Tokuda, H. (1989). Isolation of a new cycloartanoid triterpene from leaves of Lansium domesticum novel skin-tumor promotion inhibitors. Tetrahedron Letters, 30, 5615–5618.CrossRefGoogle Scholar
  114. Nordin, M. F. M., Daud, W. R. W., Talib, M. Z. M., & Hassan, O. (2008). Effect of process parameters on quality properties of microwave dried red pitaya. International Journal of Food Engineering, 4(Article 2), 1–17.Google Scholar
  115. O'Harea, T. J. (1995). Postharvest physiology and storage of rambutan. Postharvest Biology and Technology, 6, 189–199.CrossRefGoogle Scholar
  116. O'Harea, T. J., Prasada, A., & Cooke, A. W. (1994). Low temperature and controlled atmosphere storage of rambutan. Postharvest Biology and Technology, 4, 147–157.CrossRefGoogle Scholar
  117. Pan, Y. K., Zhao, L. J., Zhang, Y., Chen, G., & Mujumdar, A. S. (2003). Osmotic dehydration pre-treatment in drying of fruits and vegetables. Drying Technology, 21, 1104–1114.CrossRefGoogle Scholar
  118. Pareek, O. P. (2001). Ber. Southampton: International Centre for Underutilised Crops.Google Scholar
  119. Patthamakanokporn, O., Puwastien, P., Nitithamyong, A., & Sirichakwal, P. P. (2008). Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. Journal of Food Composition and Analysis, 21, 241–248.CrossRefGoogle Scholar
  120. Piotrowski, D., Lenart, A., & Wardzynski, A. (2004). Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. Journal of Food Engineering, 65, 519–525.CrossRefGoogle Scholar
  121. Pokorny, J. (1991). Natural antioxidants for food use. Trends in Food Science and Technology, 2, 223–226.CrossRefGoogle Scholar
  122. Pragati, D. S., & Dhawan, S. S. (2003). Effect of drying methods on nutritional composition of dehydrated aonla fruit (Emblica officinalis Garten) during storage. Plant Foods for Human Nutrition, 58, 1–9.Google Scholar
  123. Pua, C. K., Sheikh AbD Hamid, N., Rusula, G., & AbD Rahman, R. (2007). Production of drum-dried jackfruit (Artocarpus heterophyllus) powder with different concentration of soy lecithin and gum arabic. Journal of Food Engineering, 78, 630–636.CrossRefGoogle Scholar
  124. Queiroz, V. A. V., Berbert, P. A., Molina, M. A. B., Gravina, G. A., Queiroz, L. R., & Deliza, R. (2007). Desidratação por imersão-impregnação e secagem por convecção de goiaba. Pesquisa Agropecuária Brasileira, 42, 1479–1486.CrossRefGoogle Scholar
  125. Ramarathnam, N., Osawa, T., Ochi, H., & Kawakishi, S. (1995). The contribution of plant food antioxidants to human health. Trends in Food Science and Technology, 6, 75–82.CrossRefGoogle Scholar
  126. Reis, K. C., Azevedo, L. F., Siqueira, H. H., & Ferrua, F. Q. (2007). Avaliação físico-química de goiabas desidratadas osmoticamente em diferentes soluções. Ciência Agrotecnológica, 31, 781–785.Google Scholar
  127. Rhim, J. W., Nunes, R. V., Jones, V. A., & Swartzel, K. R. (1989). Kinetics of color change of grape juice generated using linearly increasing temperature. Journal of Food Science, 54, 776–777.CrossRefGoogle Scholar
  128. Rodrigues, S., & Fernandes, F. A. N. (2007a). Dehydration of melons in a ternary system followed by air-drying. Journal of Food Engineering, 80, 678–687.CrossRefGoogle Scholar
  129. Rodrigues, S., & Fernandes, F. A. N. (2007b). Image analysis of osmotically dehydrated fruits: Melons dehydration in a ternary system. European Food Research and Technology, 225, 685–691.CrossRefGoogle Scholar
  130. Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., & Fernandes, F. A. N. (2009). Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Drying Technology, 27, 220–225.CrossRefGoogle Scholar
  131. Román, F., Nagle, M., Leis, H., Janjai, S., Mahayothee, B., Haewsungcharoen, M., et al. (2009). Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand. Renewable Energy, 34, 1661–1667.CrossRefGoogle Scholar
  132. Rufino, M. S., Fernandes, F. A. N., Alves, R. E., & Brito, E. S. (2009). Free radical-scavenging behaviour of some north-east Brazilian fruit in a DPPH• system. Food Chemistry, 114, 693–695.CrossRefGoogle Scholar
  133. Saewan, N., Sutherland, J. D., & Chantrapromma, K. (2006). Antimalarial tetranortriterpenoids from the seeds of Lansium domesticum. Phytochemistry, 67, 2288–2293.CrossRefGoogle Scholar
  134. Sakia, N., Mao, W., Koshima, Y., & Watanabe, M. (2005). A method for developing model food system in microwave heating studies. Journal of Food Engineering, 66, 525–531.CrossRefGoogle Scholar
  135. Salunkhe, D. K., Bolin, H. R., & Reddy, N. R. (1991). Storage, processing, and nutritional quality of fruits and vegetables, vol. 2. Boca Raton: CRC.Google Scholar
  136. Sankat, C. K., Basanta, A., & Maharaj, V. (2000). Light mediated red colour degradation of the pomerac (Syzygium malaccense) in refrigerated storage. Postharvest Biology and Technology, 18, 253–257.CrossRefGoogle Scholar
  137. Santos, P. H. S., & Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technology, 26, 1421–1437.CrossRefGoogle Scholar
  138. Saxena, A., Bawaa, A. S., & Raju, P. S. (2008). Optimization of a multitarget preservation technique for jackfruit (Artocarpus heterophyllus L) bulbs. Journal of Food Engineering, 91, 18–28.CrossRefGoogle Scholar
  139. Saxena, A., Bawaa, A. S., & Raju, P. S. (2010). Effect of minimal processing on quality of jackfruit (Artocarpus heterophyllus L.) bulbs using response surface methodology. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0276-x.
  140. Setiawan, B., Sulaeman, A., Giraud, D. W., & Driskell, J. A. (2001). Carotenoid content of selected Indonesian fruits. Journal of Food Composition and Analysis, 14, 169–176.CrossRefGoogle Scholar
  141. Shah, N. S., & Nath, N. (2008). Changes in qualities of minimally processed litchis: Effect of antibrowning agents, osmo-vacuum drying and moderate vacuum packaging. LWT–Food Science and Technology, 41, 660–668.Google Scholar
  142. Shigematsu, E., Eik, N. M., Kimura, M., & Mauro, M. A. (2005). Influência de pré-tratamentos sobre a desidratação osmótica de carambolas. Ciência e Tecnologia de Alimentos, 25, 536–545.CrossRefGoogle Scholar
  143. Simal, S., Benedito, J., Sánchez, E. S., & Roselló, C. (1998). Use of ultrasound to increase mass transport rate during osmotic dehydration. Journal of Food Engineering, 36, 323–336.CrossRefGoogle Scholar
  144. Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328.CrossRefGoogle Scholar
  145. Skrede, G. (1985). Color quality of blackcurrant syrups during storage evaluated by Hunter. Journal of Food Science, 50, 514–517.CrossRefGoogle Scholar
  146. Sunjka, P. S., Rennie, T. J., Beaudry, C., & Raghavan, G. S. V. (2004). Microwave-convective and microwave-vacuum drying of cranberries: A comparative study. Drying Technology, 22, 1217–1231.CrossRefGoogle Scholar
  147. Sunthonvit, N., Srzednicki, G., & Craske, J. (2007). Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technology, 25, 877–881.CrossRefGoogle Scholar
  148. Taher, B. J., & Farid, M. M. (2001). Cyclic microwave thawing of frozen meat: Experimental and theoretical investigation. Chemical Engineering and Processing, 40, 379–389.CrossRefGoogle Scholar
  149. Tarleton, E. S. (1992). The role of field-assisted techniques in solid/liquid separation. Filtration Separation, 3, 246–253.CrossRefGoogle Scholar
  150. Tarleton, E. S., & Wakeman, R. J. (1998). Ultrasonically assisted separation process. In Povey & Mason (Eds.), Ultrasounds in food processing (pp. 193–218). Glasgow: Blackie Academic and Professional.Google Scholar
  151. Thomkapanich, O., Suvarnakuta, P., & Devahastin, S. (2007). Study of intermittent low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technology, 25, 205–223.CrossRefGoogle Scholar
  152. Touré, S., & Kibangu-Nkembo, S. (2004). Comparative study of natural solar drying of cassava, banana and mango. Renewable Energy, 29, 975–990.CrossRefGoogle Scholar
  153. Tulasidas, T. N., Raghavan, G. S. V., & Mujumdar, A. S. (1995). Microwave drying of grapes in a single mode cavity at 2450 MHz—II: Quality and energy aspects. Drying Technology, 13, 1973–1992.CrossRefGoogle Scholar
  154. Varith, J., Dijkanarukkul, A. A., & Achariyaviriya, S. (2007). Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, 81, 459–468.CrossRefGoogle Scholar
  155. Vial, C., Guilbert, S., & Cuq, J. L. (1991). Osmotic dehydration of kiwi fruits: Influence of process variables on the color and ascorbic acid content. Science des Aliments, 11, 63–84.Google Scholar
  156. Waliszewski, K. N., Cortes, H. D., Pardio, V. T., & Garcia, M. A. (1999). Color parameter changes in banana slices during osmotic dehydration. Drying Technology, 17, 955–960.CrossRefGoogle Scholar
  157. Wan, P. J., Muanda, M. W., & Covey, J. E. (1992). Ultrasonic vs nonultrasonic hydrogenation in a batch reactor. Journal of American Organics Chemical Society, 69, 876–879.CrossRefGoogle Scholar
  158. Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Sterilization of foodstuffs using radio frequency heating. Journal of Food Science, 68, 539–544.CrossRefGoogle Scholar
  159. Williams, D. L. (1989). Effect of ethyl oleate on moisture content of field corn during bin batch drying. Transactions of American Society of Agricultural Engineers, 5, 573–576.Google Scholar
  160. Witrowa-Rajchert, D., & Lewicki, P. P. (2006). Rehydration properties of dried plant tissues. International Journal of Food Science and Technology, 41, 1040–1046.CrossRefGoogle Scholar
  161. Xanthoupoulos, G., Oikonomou, N., & Lambrinos, G. (2007). Applicability of a single-layer drying model to predict the drying rate of whole figs. Journal of Food Engineering, 81, 553–559.CrossRefGoogle Scholar
  162. Xanthopoulos, G., Yanniotis, S., & Lambrinos, G. (2009). Water diffusivity and drying kinetics of air drying of figs. Drying Technology, 27, 502–512.CrossRefGoogle Scholar
  163. Xu, Y., Zhang, M., Mujumdar, A. S., Duan, X., & Sun, J. (2006). A two-stage vacuum freeze and convective air drying method for strawberries. Drying Technology, 24, 1019–1023.CrossRefGoogle Scholar
  164. Yong, C. K., Islam, M. D. R., & Mujumdar, A. S. (2006). Mechanical means of enhancing drying rates: Effect on drying kinetics and quality. Drying Technology, 24, 397–404.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Fabiano A. N. Fernandes
    • 1
  • Sueli Rodrigues
    • 2
  • Chung Lim Law
    • 3
  • Arun S. Mujumdar
    • 4
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Tecnologia dos AlimentosUniversidade Federal do CearáFortalezaBrazil
  3. 3.Department of Chemical and Environmental Engineering, Faculty of EngineeringThe University of NottinghamSemenyihMalaysia
  4. 4.Department of Mechanical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations