Food and Bioprocess Technology

, Volume 4, Issue 1, pp 1–26 | Cite as

Solid-Phase Microextraction (SPME) Techniques for Quality Characterization of Food Products: A Review

Review Paper


Solid-phase microextraction (SPME) is a relatively new sampling technique wherein sample extraction and pre-concentration could be achieved in a single step. The handling of an SPME device is simple, and the analysis of volatiles could be easy. However, the process becomes complex while analyzing sample matrices of heterogeneous nature. The complexity also increases depending upon the nature of compounds to be extracted. Careful selection and optimization of extraction parameters like fiber coating selection, extraction time, agitation, addition of salt, and extraction temperature have to be undertaken to improve the sensitivity and the reproducibility of this method. This paper reviews the principles associated with SPME technique from a general application viewpoint. Also, a comprehensive review of prior research related to characterization of food quality has been reported. SPME-related solutions for environmental applications have also been analyzed to be applied for new food-related applications.


Solid-phase microextraction Food analysis Volatile organic compounds Food quality Microbial metabolites Extraction 


  1. Achouri, A., Boye, J. I., & Zamani, Y. (2006). Identification of volatile compounds in soymilk using solid-phase microextraction–gas chromatography. Food Chemistry, 99, 759–766.CrossRefGoogle Scholar
  2. Arnold, J. W., & Senter, S. D. (1998). Use of digital aroma technology and SPME GC–MS to compare volatile compounds produced by bacteria isolated from processed poultry. Journal of the Science of Food and Agriculture, 78, 343–348.CrossRefGoogle Scholar
  3. Augusto, F., & Valente, A. L. P. (2002). Applications of solid-phase microextraction to chemical analysis of live biological samples. Trends in Analytical Chemistry, 21, 428–438.CrossRefGoogle Scholar
  4. Aulakh, J. S., Malik, A. K., & Mahajan, R. K. (2005a). Solid phase micro-extraction-high pressure liquid chromatographic determination of Nabam, Thiram and Azamethiphos in water samples with UV detection: preliminary data. Talanta, 66, 266–270.CrossRefGoogle Scholar
  5. Aulakh, J. S., Malik, A. K., Kaur, V., & Schmitt-Kopplin, P. (2005b). A Review on solid phase micro extraction—high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Critical Reviews in Analytical Chemistry, 35(1), 71–85.CrossRefGoogle Scholar
  6. Azenha, M., & Vasconcelos, M. T. (2002). Headspace solid-phase micro-extraction gas chromatography-mass detection method for the determination of butyltin compounds in wines. Analytica Chimica Acta, 458, 231–239.CrossRefGoogle Scholar
  7. Bartak, P., & Cap, L. (1997). Determination of phenols by solid-phase microextraction. Journal of Chromatography, 767, 171–175.CrossRefGoogle Scholar
  8. Basheer, C., & Lee, H. K. (2004). Hollow fiber membrane-protected solid phase microextraction of triazine herbicides in bovine milk and sewage sludge samples. Journal of Chromatography, 1047, 189–194.Google Scholar
  9. Batista, R. B., Grimm, C. C., & Godshall, M. A. (2002). Semiquantitative determination of short-chain fatty acids in cane and beet sugars. Journal of Chromatographic Science, 40, 127–132.Google Scholar
  10. Beghi, S., & Guillot, J. M. (2008). Use of poly(ethylene tetraphtalate) film bag to sample and remove humidity from atmosphere containing volatile organic compounds. Journal of Chromatography, 1183, 1–5.CrossRefGoogle Scholar
  11. Bene, A., Luisier, J. L., & Fornage, A. (2002). Applicability of a SPME method for the rapid determination of VOCs. Chimia, 56, 289–291.CrossRefGoogle Scholar
  12. Bicudo, J. R., Schmidt, D. R., Powers, W., Zahn, J. A., Tengman, C. L., Clanton, C. J., et al. (2002). Odor and VOC emissions from swine manure storages. In: Proceedings of Odors and Toxic Air Emissions, WEF, April 28-May1, Albuquerque: NM (CD-ROM).Google Scholar
  13. Botondi, R., DeSantis, D., Bellincontro, A., Vizovitis, K., & Mencarelli, F. (2003). Influence of ethylene inhibition by 1-methyl-cyclopropene on apricot quality, volatile production, and glycosidase activity of low and high-aroma varieties of apricots. Journal of Agricultural and Food Chemistry, 51, 1189–1200.CrossRefGoogle Scholar
  14. Boyce, M. C., & Spickett, E. E. (2002). Solid-phase microextraction in food analysis—with particular reference to wine. Food Australia, 54(8), 350–356.Google Scholar
  15. Cai, J., Liu, B., & Su, Q. (2001). Comparison of simultaneous distillation extraction and solid-phase microextraction for the determination of volatile flavor components. Journal of Chromatography, 930, 1–7.CrossRefGoogle Scholar
  16. Camarasu, C. C. (2000). Headspace SPME method development for the analysis of volatile polar residual solvents by GC–MS. Journal of Pharmaceutical and Biomedical Analysis, 23, 197–210.CrossRefGoogle Scholar
  17. Castro, M., Silva-Ferreira, A. C., Manaia, U. M., & Nunes, O. C. (2005). A case study of molinate application in a Portuguese rice field: herbicide dissipation and proposal of a clean-up methodology. Chemosphere, 59, 1059–1065.CrossRefGoogle Scholar
  18. Cavalli, J. F., Fernandez, X., Cuvelier, L. L., & Loiseau, A. M. (2003). Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. Journal of Agricultural and Food Chemistry, 51, 7709–7716.CrossRefGoogle Scholar
  19. Coelho, E., Rocha, S. M., Delgadillo, I., & Coimbra, M. A. (2006). Headspace-SPME applied to varietal volatile compounds evolution during Vitis vinifera L. cv’.Baga’ ripening. Analytica Chimica Acta, 563, 204–214.CrossRefGoogle Scholar
  20. Contarini, G., & Povolo, M. (2002). Volatile fraction of milk: comparison between purge and trap and solid phase microextraction techniques. Journal of Agricultural and Food Chemistry, 50, 7350–7355.CrossRefGoogle Scholar
  21. Davoli, E., Gangai, M. L., Morselli, L., & Tonelli, D. (2003). Characterization of odorants emissions from landfills by SPME and GC/MS. Chemosphere, 51, 357–368.CrossRefGoogle Scholar
  22. Dewulf, J., & Van Langenhove, H. (2001). Solidphase microextraction of volatile organic compounds in environmental applications. American Laboratory, 33(4), 18 and 20.Google Scholar
  23. Dewulf, J., Van Lengenhove, H., & Wittmann, G. (2002). Analysis of volatile organic compounds using gas chromatography. Trends in Analytical Chemistry, 21, 637–646.CrossRefGoogle Scholar
  24. Eisert, R., Pawliszyn, J., Barinshteyn, G., & Chambers, D. (1998). Design of an automated analysis system for the determination of organic compounds in continuous air stream using solid-phase microextraction. Analytical Communications, 35, 187–189.CrossRefGoogle Scholar
  25. Elgaali, H., Hamilton-Kemp, T. R., Newman, M. C., Collins, R. W., Yu, K., & Archbold, D. D. (2002). Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related gram positive and gram negative bacteria. Journal of Basic Microbiology, 42, 373–380.CrossRefGoogle Scholar
  26. Elmore, S. J., Papantoniou, E., & Mottram, D. (2001). A comparison of headspace entrainment on tenax with solid phase microextraction for the analysis of the aroma volatiles of cooked beef. In R. L. Rouseff & K. R. Cadwallader (Eds.), Headspace Analysis of Foods and Flavors (pp. 125–132). New York: Kluwer/Plenum.Google Scholar
  27. Fan, X., & Sokorai, K. J. B. (2002). Changes in volatile compounds of γ-irradiated fresh cilantro leaves during cold storage. Journal of Agricultural and Food Chemistry, 50, 7622–7626.CrossRefGoogle Scholar
  28. Freitas, A. M. C., Parreira, C., & Boas, V. L. (2001). The use of an electronic aroma-sensing device to assess coffee differentiation-comparison with SPME gas chromatography-mass spectrometry aroma patterns. Journal of Food Composition and Analysis, 14, 513–522.CrossRefGoogle Scholar
  29. Garcia-Esteban, M., Ansorena, D., Astiasaran, I., & Ruiz, J. (2004). Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta, 64, 458–466.CrossRefGoogle Scholar
  30. Gardini, F., Lanciotti, R., Sinigaglia, M., & Guerzoni, M. E. (1997). A headspace gas chromatographic approach for the monitoring of the microbial cell activity and cell viability evaluation. Journal of Microbiological Methods, 29, 103–114.CrossRefGoogle Scholar
  31. Gianelli, M. P., Flores, M., & Toldra, F. (2002). Optimization of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. Journal of the Science of Food and Agriculture, 82, 1703–1709.CrossRefGoogle Scholar
  32. Goodridge, C. F., Beaudry, R. M., Pestka, J. J., & Smith, D. M. (2003). Solid-phase microextraction-gas chromatography for quantifying headspace hexanal above freeze-dried chicken myofibrils. Journal of Agricultural and Food Chemistry, 51, 4185–4190.CrossRefGoogle Scholar
  33. Guillot, S., Peytavi, L., Bureau, S., Boulanger, R., Lepoutre, J. P., Crouzet, J., et al. (2006). Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 96, 147–155.CrossRefGoogle Scholar
  34. Harreveld, A. P. (2003). Odor concentration decay and stability in gas sampling bags. Journal of the Air and Waste Management Association, 53, 51–60.Google Scholar
  35. Harris, C. P., McFeeters, R. F., & Fleming, H. P. (2001). Solid-phase microextraction (SPME) technique for measurement of generation of fresh cucumber flavor compounds. Journal of Agricultural and Food Chemistry, 49, 4203–4207.CrossRefGoogle Scholar
  36. Hartmann, P. J., McNair, H. M., & Zoecklein, B. W. (2002). Measurement of 3-alkyl-2-methoxypyrazine by headspace solid-phase microextraction in spiked model wines. American Journal of Enology and Viticulture, 53(4), 285–288.Google Scholar
  37. Hayasaka, Y., & Bartowsky, E. (1999). Analysis of diacetyl in wine using solid-phase microextraction combined with gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 47, 612–617.CrossRefGoogle Scholar
  38. Holt, R. U. (2001). Mechanisms effecting analysis of volatile flavour components by solid-phase microextraction and gas chromatography. Journal of Chromatography, 937, 107–114.CrossRefGoogle Scholar
  39. Hook, G. L., Kimm, G. L., Hall, T., & Smith, P. A. (2002). Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC–MS). Trends in Analytical Chemistry, 21, 534–543.CrossRefGoogle Scholar
  40. Insausti, K., Beriain, M. J., Gorraiz, C., & Purroy, A. (2002). Volatile compounds of raw beef from 5 local Spanish cattle breeds stored under modified atmosphere. Journal of Food Science, 67(4), 1580–1589.CrossRefGoogle Scholar
  41. Intarapichet, K. O., & Bailey, M. E. (1993). Volatile compounds produced by meat. Psuedomonas grown on beef at refrigeration temperatures. ASEAN Food Journal, 8, 14–21.Google Scholar
  42. Jelen, H. H. (2003). Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Letters in Applied Microbiology, 36, 263–267.CrossRefGoogle Scholar
  43. Jelen, H. H., Wlazly, K., Wasowicz, E., & Kaminski, E. (1998). Solid-phase microextraction for the analysis of some alcohols and esters in beer: comparison with static headspace method. Journal of Agricultural and Food Chemistry, 46, 1469–1473.CrossRefGoogle Scholar
  44. Jelen, H. H., Majcher, M., Zawirska-Wojtasiak, R., Wiewiorowska, M., & Wasowicz, E. (2003). Determination of geosmin, 2-methylisoborneol and a musty-earthy odor in wheat grain by SPME-GC–MS, profiling volatiles and sensory analysis. Journal of Agricultural Food Chemistry, 51, 7079–7085.CrossRefGoogle Scholar
  45. Jelen, H. H., Mildner-Szkudlarz, S., Jasinska, I., & Wasowicz, E. (2007). A headspace-SPME-MS method for monitoring rapeseed oil autoxidation. Journal of the American Oil Chemists’s Society, 84(6), 509–517.CrossRefGoogle Scholar
  46. Jia, M., Koziel, J., & Pawliszyn, J. (2000). Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography. Field Analytical Chemistry and Technology, 4(2–3), 73–84.CrossRefGoogle Scholar
  47. Jones, P. R. H., Ewen, R. J., & Ratcliffe, N. M. (1998). Simple methods for the extraction and identification of amine malodors from spoiled foodstuffs. Journal of Food Composition and Analysis, 11, 274–279.CrossRefGoogle Scholar
  48. Jung, D. M., & Ebeler, S. E. (2003). Headspace solid-phase microextraction method for the study of the volatility of selected flavor compounds. Journal of Agricultural and Food Chemistry, 51, 200–205.CrossRefGoogle Scholar
  49. Kataoka, H., Lord, H. L., & Pawliszyn, J. (2000). Applications of solid-phase microextraction in food analysis. Journal of Chromatography, 880, 35–62.CrossRefGoogle Scholar
  50. King, A. J., Readman, J. W., & Zhou, J. L. (2003). The application of solid-phase micro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons (PAHs). Environmental Geochemistry and Health, 25, 69–75.CrossRefGoogle Scholar
  51. Koziel, J. A., & Novak, I. (2002). Sampling and sample preparation strategies based on solid-phase microextraction for analysis of indoor air. Trends in Analytical Chemistry, 21(12), 840–850.CrossRefGoogle Scholar
  52. Kueh, A. J., Marriott, P. J., Wynne, P. M., & Vine, J. H. (2003). Application of comprehensive two-dimensional gas chromatography to drugs analysis in doping control. Journal of Chromatography, 1000, 109–124.CrossRefGoogle Scholar
  53. Lee, J. H., Hwang, S. M., Lee, D. W., & Heo, G. S. (2002). Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air. Bulletin of Korean Chemical Society, 23(3), 488–496.CrossRefGoogle Scholar
  54. Lee, J. H., Diono, R., Kim, G. Y., & Min, D. B. (2003). Optimization of solid phase microextraction analysis for the headspace volatile compounds of parmesan cheese. Journal of Agricultural and Food Chemistry, 51, 1136–1140.CrossRefGoogle Scholar
  55. Linder, M., & Ackman, R. G. (2002). Volatile compounds recovered by solid-phase microextraction from fresh adductor muscle and total lipids of sea scallop (Placopecten magellanicus) from Georges Bank (Nova Scotia). Journal of Food Science, 67(6), 2032–2037.CrossRefGoogle Scholar
  56. Liu, T. T., & Yang, T. S. (2002). Optimization of solid-phase microextraction analysis for studying change of headspace flavor compounds of banana during ripening. Journal of Agricultural and Food Chemistry, 50, 653–657.CrossRefGoogle Scholar
  57. Marco, A., Navarro, J. L., & Flores, M. (2004). Volatile compounds of dry-fermented sausages as affected by solid-phase microextraction (SPME). Food Chemistry, 84, 633–641.CrossRefGoogle Scholar
  58. Maroto, M. C. D., Coello, M. S. P., & Cabezudo, M. D. (2002). Headspace solid-phase microextraction analysis of volatile components of spices. Chromatographia, 55(11/12), 723–728.CrossRefGoogle Scholar
  59. Marsili, R. T. (1999). SPME-MS-MVA as an electronic nose for the study of off-flavors in milk. Journal of Agricultural and Food Chemistry, 47, 648–654.CrossRefGoogle Scholar
  60. Martin, D., & Ruiz, J. (2007). Analysis of polycyclic aromatic hydrocarbons in solid matrices by solid-phase microextraction coupled to a direct extraction device. Talanta, 71, 751–757.CrossRefGoogle Scholar
  61. Matisova, E., Sedlakova, J., Slezackova, M., & Welsch, T. (1999). Solid-phase microextraction of volatile polar compounds in water. Journal of High Resolution Chromatography, 22(2), 109–115.CrossRefGoogle Scholar
  62. Mazida, M. M., Salleh, M. M., & Osman, H. (2005). Analysis of volatile aroma compounds of fresh chilli (Capsicum annuum) during stages of maturity using solid phase microextraction (SPME). Journal of Food Composition and Analysis, 18, 427–437.Google Scholar
  63. Mestres, M., Marti, M. P., Busto, O., & Gausch, J. (2000). Analysis of low-volatility organic sulphur compounds microextraction and gas chromatography. Journal of Chromatography, 881, 583–590.CrossRefGoogle Scholar
  64. Miller, M. E., & Stuart, J. D. (1999). Comparison of gas-sampled and SPME-sampled static headspace for the determination of volatile flavor compounds. Analytical Chemistry, 71, 23–27.CrossRefGoogle Scholar
  65. Monje, M. C., Privat, C., Gastine, V., & Nepveu, F. (2002). Determination of ethyl phenol compounds in wine by headspace solid-phase microextraction in conjunction with gas chromatography and flame ionization detection. Analytica Chimica Acta, 458, 111–117.CrossRefGoogle Scholar
  66. Nerin, C., Philo, M. R., Salafranca, J., & Castle, L. (2002). Determination of bisphenol-type contaminants from food packing materials in aqueous food by solid-phase microextraction–high-performance liquid chromatography. Journal of Chromatography, 963, 375–380.CrossRefGoogle Scholar
  67. Nielsen, A. T., & Jonsson, S. (2002). Trace determination of volatile sulfur compounds by solid-phase microextraction and GC–MS. Analyst, 127, 1045–1049.CrossRefGoogle Scholar
  68. Nilsson, T., Larsen, T. O., Montanarella, L., & Madsen, J. O. (1996). Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species. Journal of Microbiological Methods, 25, 245–255.CrossRefGoogle Scholar
  69. Nilsson, T., Ferrari, R., & Facchetti, S. (1997). Inter-laboratory studies for the validation of solid-phase microextraction for the quantitative analysis of volatile organic compounds in aqueous samples. Analytica Chimica Acta, 356, 113–123.CrossRefGoogle Scholar
  70. Ong, B. T., Nazimah, S. A. H., Tan, C. P., Mirhosseini, H., Osman, A., Mat Hashim, D., et al. (2008). Analysis of volatile compounds in five jackfruit (Artocarpus heterophyllus L.) cultivars using solid-phase microextraction (SPME) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Journal of Food Composition and Analysis, 21, 416–422.CrossRefGoogle Scholar
  71. Otero, R. R., Ruiz, C. Y., Grande, B. C., & Gandara, J. S. (2002). Solid-phase microextraction-gas chromatographic-mass spectrometric method for the determination of the fungicides cyprodinil and fludioxonil in white wines. Journal of Chromatography, 942, 41–52.CrossRefGoogle Scholar
  72. Ouyang, G., & Pawliszyn, J. (2008). A critical review in calibration methods for solid-phase microextraction. Analytical Chemica Acta, 627, 184–197.CrossRefGoogle Scholar
  73. Page, B. D., & Lacroix, G. (1993). Application of solid-phase microextraction to the headspace gas chromatographic analysis of halogenated volatiles in selected foods. Journal of Chromatography, 648, 199–211.CrossRefGoogle Scholar
  74. Parreira, F. V., de Carvalho C. R., & Cardeal Z. L. (2002). Evaluation of indoor exposition to benzene, toluene, ethylbenzene, xylene and styrene by passive sampling with a solid-phase microextraction device. Journal of Chromatography Science, 40(3), 122–126.Google Scholar
  75. Penton, Z. (1996). Flavor volatiles in a fruit beverage with automated SPME. Food Testing and Analysis, 2, 16–18.Google Scholar
  76. Pawliszyn, J. (1997). Solid phase microextraction: theory and practice (pp. 25–55). New York: John Wiley and Sons.Google Scholar
  77. Pawliszyn, J. (2002). Solid phase microextraction. In: Issaq (Ed.), A century of separation science (pp. 399–419). New York: Marcel Dekker Inc.Google Scholar
  78. Perez, R. A., Brunete, C. S., Calvo, R. M., & Tadeo, J. L. (2002). Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Agricultural and Food Chemistry, 50, 2633–2637.CrossRefGoogle Scholar
  79. Plutowska, B., & Wardencki, W. (2007). Aromagrams–aromatic profiles in the appreciation of food quality. Food Chemistry, 101, 845–872.CrossRefGoogle Scholar
  80. Pranovich, A. V., Eckerman, C., & Holmbom, B. (2002). Determination of methanol released from wood and mechanical pulp by headspace solid-phase microextraction. Journal of Pulp and Paper Science, 28(6), 199–203.Google Scholar
  81. Preti, G., Thaler, E., Hanson, W. C., Troy, M., Eades, J., & Gelperin, A. (2009). Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography B, 877, 2011–2018.CrossRefGoogle Scholar
  82. Ramarathnam, N., Rubin, L. J., & Diosady, L. L. (1991). Studies on meat flavor. 2. A quantitative investigation of the volatile carbonyls and hydrocarbons in uncured and cured beef and chicken. Journal of Agricultural and Food Chemistry, 39, 1839–1847.CrossRefGoogle Scholar
  83. Ramarathnam, N., Rubin, L. J., & Diosady, L. L. (1993). Studies on meat flavor. 4. Fractionation, characterization, and quantitation of volatiles from uncured and cured beef and chicken. Journal of Agricultural and Food Chemistry, 41, 939–945.CrossRefGoogle Scholar
  84. Ramesh, A., & Ravi, P. E. (2001). Applications of solid-phase microextraction (SPME) in the determination of residues of certain herbicides at trace levels in environmental samples. Journal of Environmental Monitoring, 3, 505–508.CrossRefGoogle Scholar
  85. Razote, E., Jeon, I., Maghirang, R., & Chobpattana, W. (2002). Dynamic air sampling of volatile organic compounds using solid phase microextraction. Journal of Environmental Science and Health, B37(4), 365–378.Google Scholar
  86. Razote, E. B., Maghirang, R. G., Seitz, L. M., & Jeon, I. J. (2004). Characterization of volatile organic compounds on airborne dust in a swine finishing barn. Transactions of the ASAE, 47(4), 1231–1238.Google Scholar
  87. Reto, M., Figueira, M. E., Filipe, H. M., & Almeida, C. M. M. (2007). Analysis of vitamin K in green tea leafs and infusion by SPME-GC-FID. Food Chemistry, 100, 405–411.CrossRefGoogle Scholar
  88. Roberts, D. D., Pollien, P., & Milo, C. (2000). Solid-phase microextraction method development for headspace analysis of volatile flavor compounds. Journal of Agriculture and Food Chemistry, 48, 2431–2440.CrossRefGoogle Scholar
  89. Rocha, S., Ramalheira, V., Barros, A., Delgadillo, I., & Coimbra, M. A. (2001). Headpsace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model. Journal of Agricultural and Food Chemistry, 49, 5142–5151.CrossRefGoogle Scholar
  90. Rodriguez-Bencomo, J. J., Conde, J. E., Garcia-Montelongo, F., & Perez-Trujillo, J. P. (2003). Determination of major compounds in sweet wines by headspace solid-phase microextraction and gas chromatography. Journal of Chromatography, 991, 13–22.CrossRefGoogle Scholar
  91. Rodriguez, I., Llompart, M. P., & Cela, R. (2000). Solid-phase extraction of phenols. Journal of Chromatography, 885, 291–304.CrossRefGoogle Scholar
  92. Roth, C. W., Hoch, J. A., & DeMoss, R. D. (1970). Physiological studies of biosynthetic indole excretion in Bacillus alvei. Journal of Bacteriology, 106(1), 97–106.Google Scholar
  93. Ruiz, J., Ventanas, J., & Cava, R. (2001). New device for direct extraction of volatiles in solid samples using SPME. Journal of Agricultural and Food Chemistry, 49, 5115–5121.CrossRefGoogle Scholar
  94. Sanchez-Ortega, A., Sampedro, M. C., Unceta, N., Goicolea, M. A., & Barrio, R. J. (2005). Solid-phase micro-extraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples. Journal of Chromatography, 1094, 70–76.CrossRefGoogle Scholar
  95. Schilling, M. W., Yoon, Y., Tokarskyy, O., Pham, A. J., Williams, R. C., & Marshall, D. L. (2009). Effects of ionizing irradiation and hydrostatic pressure on Escherichia coli O157:H7 inactivation, chemical composition and sensory acceptability of ground beef patties. Meat Science, 85, 705–710.CrossRefGoogle Scholar
  96. Senecal, A.G., Magnone, J., Yeomans, W., & Powers, E.M., (2002). Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis. In: Proceedings of the SPIE, Edited by Jensen J L and Burggraf L W, 4575, 121–131Google Scholar
  97. Serot, T., & Lafficher, C. (2003). Optimization of solid-phase microextraction coupled to gas chromatography for determination of phenolic compounds in smoked herring. Food Chemistry, 82, 513–519.CrossRefGoogle Scholar
  98. Shahidi, F., Rubin, L., & D’Souza, L. A. (1986). Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. CRC critical reviews in food science and nutrition, 24(2), 141–243.CrossRefGoogle Scholar
  99. Siripatrawan, U. (2008). Rapid differentiation E. coli and Salmonella typhimurium using metal oxide sensors integrated with pattern recognition. Sensors & Actuators B: Chemical, 133, 414–419.CrossRefGoogle Scholar
  100. Siripatrawan, U., & Harte, B. R. (2007). Solid phase microextraction/gas chromatography/mass spectrometry integrated with chemometrics for detection of Salmonella typhimurium contamination in a packaged fresh vegetable. Analytica Chimica Acta, 581, 63–70.CrossRefGoogle Scholar
  101. Solis-Solis, H. M., Calderon-Santoyo, M., Schorr-Galindo, S., Luna-Solano, G., & Ragazzo-Sanchez, J. A. (2007). Characterization of aroma potential of apricot varieties using different extraction techniques. Food Chemistry, 105, 829–837.CrossRefGoogle Scholar
  102. Soncin, S., Chiesa, L. M., Cantoni, C., & Biondi, P. A. (2007). Preliminary study of the volatile fraction in the raw meat of pork, duck and goose. Journal of Food Composition and Analysis, 20(5), 436–439.CrossRefGoogle Scholar
  103. Sostaric, T., Boyce, M. C., & Spickett, E. E. (2000). Analysis of the volatile components in vanilla extracts and flavorings by solid-phase microextraction and gas chromatography. Journal of Agricultural and Food Chemistry, 48, 5802–5807.CrossRefGoogle Scholar
  104. Spinhirne, J. P., Koziel, J. A., & Chirase, N. K. (2004). Sampling and analysis of volatile organic compounds in bovine breath by solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1025(1), 63–69.CrossRefGoogle Scholar
  105. Stashenko, E. E., Puertas, M. A., Salgar, W., Delgado, W., & Martinez, J. R. (2000). Solid-phase microextraction with on-fiber derivatisation applied to the analysis of volatile carbonyl compounds. Journal of Chromatography, 886, 175–181.CrossRefGoogle Scholar
  106. Stinson, J. A., Persaud, K. C., & Bryning, G. (2006). Generic system for the detection of statutory potato pathogens. Sensors and Actuators B: Chemical, 116, 100–106.CrossRefGoogle Scholar
  107. Stutz, K. H. (1978). The utilization of volatile compounds produced during microbial growth on ground beef to characterize spoilage. PhD Theses, University of Massachusetts: MA.Google Scholar
  108. Syhre, M., & Chambers, S. T. (2008). The scent of Mycobacterium tuberculosis. Tuberculosis, 88, 317–323.CrossRefGoogle Scholar
  109. Trabue, S. L., Anhalt, J. C., & Zahn, J. A. (2006). Bias of Tedlar bags in the measurement of agricultural odorants. Journal of Environmental Quality, 35, 1668–1677.CrossRefGoogle Scholar
  110. Trimble, T. A., You, J., & Lydy, L. J. (2008). Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Chemosphere, 71, 337–344.CrossRefGoogle Scholar
  111. Tuduri, L., Desauziers, V., & Fanlo, J. L. (2001). Potential of solid-phase microextraction fibers for the analysis of volatile organic compounds in air. Journal of Chromatographic Science, 39, 521–529.Google Scholar
  112. Tuduri, L., Desauziers, V., & Fanlo, J. L. (2003). A simple calibration procedure for volatile organic compounds sampling in air with adsorptive solid-phase microextraction fibers. Analyst, 128, 1028–1032.CrossRefGoogle Scholar
  113. Turner, N. W., Subrahmanyam, S., & Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins. Analytica Chimica Acta, 632, 168–180.CrossRefGoogle Scholar
  114. Ventanas, S., & Ruiz, J. (2006). On-site analysis of volatile nitrosamines in food model systems by solid-phase microextraction coupled to a direct extraction device. Talanta, 70, 1017–1023.CrossRefGoogle Scholar
  115. Vichi, S., Castellote, A. I., Pizzale, L., Conte, L. S., Buxaderas, S., & Tamames, E. L. (2003). Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. Journal of Chromatography, 983, 19–33.CrossRefGoogle Scholar
  116. Vrana, B., Mills, G. A., Allan, I. J., Dominiak, E., Svensson, K., Knutsson, J., et al. (2005). Passive sampling techniques for monitoring pollutants in water. Trends in Analytical Chemistry, 24, 845–868.CrossRefGoogle Scholar
  117. Wady, L., Bunte, A., Pehrson, C., & Larsson, L. (2003). Use of gas chromatography-mass spectrometry / solid phase microextraction for the identification of MVOCs from moldy building materials. Journal of Microbiological Methods, 52, 325–332.CrossRefGoogle Scholar
  118. Wambura, P., & Yang, W. W. (2009). Ultrasonication and edible coating effects on lipid oxidation of roasted peanuts. Food and Bioprocess Technology. doi:10.1007/s11947-009-0282-z, in press.
  119. Wardencki, W., Sowinski, P., & Curylo, J. (2003). Evaluation of headspace solid-phase microextraction for the analysis of volatile carbonyl compounds in spirits and alcoholic beverages. Journal of Chromatography, 984, 89–96.CrossRefGoogle Scholar
  120. Wardencki, W., Michulec, M., & Cuylo, J. (2004). A review of theoretical and practical aspects of solid-phase microextraction in food analysis. International Journal of Food Science and Technology, 39, 703–717.CrossRefGoogle Scholar
  121. Warren, B. R., Rouseff, R. L., Schneider, K. R., & Parish, M. E. (2007). Identification of volatile sulfur compounds produced by Shigella sonnei using gas chromatography-olfactometry. Food Control, 18, 179–182.CrossRefGoogle Scholar
  122. Watts, V. A., Butzke, C. E., & Boulton, R. B. (2003). Study of aged cognac using solid-phase microextraction and partial least-squares regression. Journal of Agricultural and Food Chemistry, 51, 7738–7742.CrossRefGoogle Scholar
  123. Wick, L. E., Murray, E., Mizutani, J., & Koshika, M. (1967). Irradiation flavor and the volatile components of beef. Advances in Chemistry Series, 65, 12–25.Google Scholar
  124. Wu, J., Xie, W., & Pawliszyn, J. (2000). Automated in tube solid-phase microextraction coupled with HPLC–ES–MS for the determination of catechins and caffeine in tea. Analyst, 125, 2216–2222.CrossRefGoogle Scholar
  125. Xie, J., Sun, B., Zheng, F., & Wang, S. (2008). Volatile flavor constituents in roasted pork of Mini-pig. Food Chemistry, 109, 506–514.CrossRefGoogle Scholar
  126. Yu, A. N., Sun, B. G., Tian, D. T., & Qu, W. Y. (2008). Analysis of volatile compounds in traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME. Food Chemistry, 110, 233–238.CrossRefGoogle Scholar
  127. Zhang, Z., & Pawliszyn, J. (1993). Headspace solid-phase microextraction. Analytical Chemistry, 65, 1843–1852.CrossRefGoogle Scholar
  128. Zini, C. A., Augusto, F., Christensen, E., Smith, B. P., Caramao, E. B., & Pawliszyn, J. (2001). Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME. Analytical Chemistry, 73(19), 4729–4735.CrossRefGoogle Scholar
  129. Zini, C. A., Augusto, F., Christensen, E., Caramao, E. B., & Pawliszyn, J. (2002). SPME applied to the study of volatile organic compounds emitted by three species of Eucalyptus in situ. Journal of Agricultural and Food Chemistry, 50, 7199–7205.CrossRefGoogle Scholar
  130. Zygmunt, B., & Namiesnik, J. (2001). Solid-phase microextraction-gas chromatographic determination of volatile monoatomic hydrocarbons in soil. Fresenius' Journal of Analytical Chemistry, 370, 1096–1099.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biological and Agricultural EngineeringLouisiana State University Agricultural CenterBaton RougeUSA
  2. 2.Department of Electrical and Computer Engineering TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations