Food and Bioprocess Technology

, Volume 5, Issue 1, pp 338–347 | Cite as

Rapid Non-destructive Detection of Spoilage of Intact Chicken Breast Muscle Using Near-infrared and Fourier Transform Mid-infrared Spectroscopy and Multivariate Statistics

  • Dimitris Alexandrakis
  • Gerard Downey
  • Amalia G. M. Scannell
Original Paper


Near-infrared (NIR) transflectance and Fourier transform-infrared (FT-IR) attenuated total reflectance spectra of intact chicken breast muscle packed under aerobic conditions and stored at 4° for 14 days were collected and investigated for their potential use in rapid non-destructive detection of spoilage. Multiplicative scatter correction-transformed NIR and standard normal variate-transformed FT-IR spectra were analysed using principal component analysis (PCA), partial least-squares discriminant analysis (PLS2-DA) and outer product analysis (OPA). PCA and PLS2-DA regression failed to completely discriminate between days 0 and 4 samples (total viable count (TVC) days 0 and 4 = 5.23 and 6.75 log10 cfu g−1) which had bacterial loads smaller than the accepted levels (8 log10 cfu g−1) of sensory spoilage detection but classified correctly days 8 and 14 samples (TVC days 8 and 14 = 9.61 and 10.37 log10 cfu g−1). OPA performed on both NIR and FT-IR datasets revealed several correlations that highlight the effect of proteolysis in influencing the spectra. These correlations indicate that increase in free amino acids and peptides could be the main factor in the discrimination of intact chicken breast muscle. This investigation suggests that NIR and FT-IR spectroscopy can become useful, rapid, non-destructive tools for spoilage detection.


NIR FT-IR OPA PCA PLS2-DA Chicken breast muscle Spoilage 


  1. Adams, M. R., & Moss, M. O. (2000). Food microbiology (2nd ed.). UK: The Royal Society of Chemistry, MPG Books.Google Scholar
  2. Aho, P. (2006). Broiler economics bulletin, 14(6), Arbor Acres, USA.Google Scholar
  3. Alexandrakis, D., Downey, G., & Scannell, A. G. M. (2008). Detection and identification of bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis. Journal of Agricultural and Food Chemistry, 56(10), 3431–3437.CrossRefGoogle Scholar
  4. Ammor, M. S., Argyri, A., & Nychas, G. J. E. (2009). Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Science, 81(3), 507–514.CrossRefGoogle Scholar
  5. Barros, A. S., Mafra, I., Ferreira, D., Cardoso, S., Reis, A., Lopes da Silva, J. A., et al. (2002). Determination of the degree of methylesterification of pectic polysaccharides by FT-IR using an outer product PLS1 regression. Carbohydrate Polymers, 50, 85.CrossRefGoogle Scholar
  6. Barros, A. S., Safar, M., Devaux, M. F., Robert, P., Bertrand, D., & Rutledge, D. N. (1997). Relations between mid-infrared and near infrared spectra detected by analysis of variance of an intervariable data matrix. Applied Spectroscopy, 51(9), 1384.CrossRefGoogle Scholar
  7. Brown, H. M. (1982). Meat microbiology (pp. 86–89). Essex: Applied Sciences Publishers Ltd.Google Scholar
  8. Byler, D. M., & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25, 469–487.CrossRefGoogle Scholar
  9. Champiat, D., Matas, N., Monfort, B., & Fraass, H. (2001). Application of biochemiluminescence to HACCP. Luminescence, 16, 193–198.CrossRefGoogle Scholar
  10. Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33, 19–33.CrossRefGoogle Scholar
  11. Di Natale, C., Zude-Sasse, M., Macagnano, A., Paolesse, R., Herold, B., & D’Amico, A. (2002). Outer product analysis of electronic nose and visible spectra: application to the measurement of peach fruit characteristics. Analytica Chimica Acta, 459, 107.CrossRefGoogle Scholar
  12. Dubois, J., Lewis, E. N., Fry, F. S., Jr., & Calvey, E. M. (2005). Bacterial identification by near-infrared imaging of food specific-cards. Food Microbiology, 22, 577–583.CrossRefGoogle Scholar
  13. Ellis, D. I., Broadhurst, D., Bell, D. B., Rowland, J. J., & Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Applied and Environmental Microbiology, 68(6), 2822–2828.CrossRefGoogle Scholar
  14. Gill, C. O., & Newton, K. G. (1978). The ecology of bacterial spoilage of fresh meat at chill temperatures. Meat Science, 2, 207–217.CrossRefGoogle Scholar
  15. Hennessy, S., Downey, G., & O’Donnell, C. (2008). Multivariate analysis of attenuated total reflection–Fourier transform infrared spectroscopic data to confirm the origin of honeys. Applied Spectroscopy, 62(10), 1115–1123.CrossRefGoogle Scholar
  16. Hong, Y., Berrang, M. E., Liu, T., Hofacre, C. L., Sanches, S., Wang, L., et al. (2003). Rapid detection of Campylobacter coli, C. jejuni, and Salmonella enterica on poultry carcasses by using PCR enzyme linked immunosorbent assay. Applied and Environmental Microbiology, 69, 3492–3499.CrossRefGoogle Scholar
  17. Jaillais, B., Pinto, R., Barros, A. S., & Rutledge, D. N. (2004). Outer-product analysis (OPA) using PCA to study the influence of temperature on NIR spectra of water. Vibrational Spectroscopy, 39(1), 50–58.CrossRefGoogle Scholar
  18. Lin, M., Al-Holy, M., Mousavi-Hesary, M., Al-Qadiri, H., Cavinato, A. G., & Rasco, B. A. (2004). Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600–1100 nm). Letters in Applied Microbiology, 39, 148–155.CrossRefGoogle Scholar
  19. Liu, F., He, Y., Wang, L., & Sun, G. (2009). Detection of organic acids and pH of fruit vinegars using near-infrared spectroscopy and multivariate calibration. Food and Bioprocess Technology. doi:10.1007/s11947-009-0240-9.
  20. Mossoba, M. M. (1999). Spectral methods in food analysis. New York: Marcel Dekker.Google Scholar
  21. Nychas, G. J. E., Dillon, V. M., & Board, R. G. (1988). Glucose, the key substrate in the microbiological changes occurring in meat and certain meat products. Biotechnology and Applied Biochemistry, 10, 203–231.Google Scholar
  22. Nychas, G. J. E., & Tassou, C. C. (1997). Spoilage process and proteolysis in chicken as detected by HPLC. Journal of the Science of Food and Agriculture, 74, 199–208.CrossRefGoogle Scholar
  23. Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis. Harlow: Longman Scientific & Technical.Google Scholar
  24. Pittard, B. T., Freeman, L. R., Later, D. W., & Lee, M. L. (1982). Identification of volatile organic compounds produced by fluorescent pseudomonads on chicken breast muscle. Applied and Environmental Microbiology, 43(6), 1504–1506.Google Scholar
  25. Poole, L., & Finney, J. L. (1984). Sequential hydration of dry proteins: a direct difference IR investigation of sequence homologs lysozyme and α-lactalbumin. Biopolymers, 23, 1647–1666.CrossRefGoogle Scholar
  26. Rodriguez-Saona, L. E., Khambaty, F. M., Fry, F. S., & Calvey, E. M. (2001). Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 49, 574–579.CrossRefGoogle Scholar
  27. Rodriguez-Saona, L. E., Khambaty, F. M., Fry, S. F., Dubois, J., & Calvey, E. M. (2004). Detection and identification of bacteria in a juice matrix with Fourier transform-near infrared spectroscopy and multivariate analysis. Journal of Food Protection, 67(11), 2555–2559.Google Scholar
  28. Rutledge, D. N., Barros, A. S., & Gaudard, F. (1997). ANOVA and factor analysis applied to time domain NMR signals. Magnetic Resonance in Chemistry, 35, S13.CrossRefGoogle Scholar
  29. Rutledge, D. N., Barros, A. S., & Giangiacomo, R. (2001). Interpreting near infrared spectra of solutions by outer product analysis with time domain NMR. In G. A. Webb, P. S. Belton, A. M. Gil & I. Delgadillo (Eds.), Magnetic resonance in food science: a view to the future (pp. 179–192). Cambridge, UK: Royal Society of Chemistry.CrossRefGoogle Scholar
  30. Rutledge, D. N., & McIntyre, P. A. (1992). Proposed European implementation of the JCAMP-DX data file transfer format. Chemometrics and Intelligent Laboratory Systems, 16, 95–101.CrossRefGoogle Scholar
  31. Sams, A. R. (2001). Poultry meat processing, Inc NetLibrary (pp. 165–170). Ohio: CRC Press.Google Scholar
  32. Shao, Y., & He, Y. (2009). Measurement of soluble solids content and pH of yogurt using visible/near infrared spectroscopy and chemometrics. Food and Bioprocess Technology, 2(2), 229–233.CrossRefGoogle Scholar
  33. Sinija, V. R., & Mishra, H. N. (2009). FTNIR spectroscopic method for determination of moisture content in green tea granules. Food and Bioprocess Technology. doi:10.1007/s11947-008-0149-8.
  34. Suthiluk, P., Saranwong, S., Kawano, S., Numthuan, S., & Satake, T. (2008). Possibility of using near infrared spectroscopy for evaluation of bacterial contamination in shredded cabbage. International Journal of Food Science & Technology, 43, 160–165.CrossRefGoogle Scholar
  35. Watson, C. A. (1977). Near infrared reflectance spectrophotometric analysis of agricultural products. Analytical Chemistry, 49, 835A–840A.CrossRefGoogle Scholar
  36. Williams, P., & Norris, K. (eds). (2001). Near-infrared technology in the agricultural and food industries (2nd ed.). St. Paul, MN: American Association of Cereal Chemists.Google Scholar
  37. Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1(2), 117–129.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Dimitris Alexandrakis
    • 1
    • 2
  • Gerard Downey
    • 1
  • Amalia G. M. Scannell
    • 2
  1. 1.Teagasc, Ashtown Food Research CentreDublinIreland
  2. 2.College of Life Sciences, School of Agriculture, Food Science and Veterinary Medicine, Agriculture and Food Science CentreUniversity College DublinDublinIreland

Personalised recommendations