Food and Bioprocess Technology

, Volume 3, Issue 2, pp 182–196 | Cite as

A Review on Microbial Lipases Production

  • Helen Treichel
  • Débora de Oliveira
  • Marcio A. Mazutti
  • Marco Di Luccio
  • J. Vladimir Oliveira
Review Article

Abstract

This review paper provides an overview regarding the main aspects of microbial lipases production. The most important microbial lipase-producing strains for submerged and solid-state fermentations are reviewed as well as the main substrates, including the use of agroindustrial residues. Current process techniques (batch, repeated-batch, fed-batch, and continuous mode) are discussed and the main bioreactors configurations are also presented. Furthermore, the present review paper shows a general overview about the development of mathematical models applied to lipase production. Finally, some future perspectives on lipase production are discussed with special emphasis on lipase engineering and the use of mathematical models as a useful tool for process improvement and control.

Keywords

Review Lipase production Substrates Process conduction Bioprocess modeling 

References

  1. Abada, E. A. E. (2008). Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1. Pakistan Journal of Biological Sciences, 11, 1100–1106.CrossRefGoogle Scholar
  2. Alkan, H., Baysal, Z., Uyar, F., & Dogru, M. (2007). Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon waste. Applied Biochemistry and Biotechnology, 136, 183–192. doi:10.1007/BF02686016.CrossRefGoogle Scholar
  3. Alonso, F. O. M., Oliveira, E. B. L., Dellamora-Ortiz, G. M., & Pereira-Meirelles, F. V. (2005). Improvement of lipase production at different stirring speeds and oxygen levels. Journal of the Brazilian Sciences of Chemical Engineering, 22(1), 9–18. doi:10.1590/S0104-66322005000100002.Google Scholar
  4. Amaral, P. F. F., Almeida, A. P. R., Peixoto, T., Rocha-Leão, M. H. M., Coutinho, J. A. P., & Coelho, M. A. (2007). Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World Journal of Microbiology & Biotechnology, 23, 339–344. doi:10.1007/s11274-006-9229-y.CrossRefGoogle Scholar
  5. Azeredo, L. A. I., Gomes, P. M., Sant’Anna, G,. Jr, Castilho, L. R., & Freire, D. G. (2007). Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Current Microbiology, 54, 361–365. doi:10.1007/s00284-006-0425-7.CrossRefGoogle Scholar
  6. Bapiraju, K. V. V. S. N., Sujatha, P., Ellaiah, P., & Ramana, T. (2005). Sequential parametric optimization of lipase production by a mutant strain Rhizopus sp. BTNT-2. Brazilian Journal of Chemical Engineering, 45(4), 257–273. doi:10.1002/jobm.200410548.Google Scholar
  7. Becker, P., & Markl, H. (2000). Modeling of olive oil degradation and oleic acid inhibition during chemostat and batch cultivations of Baccilus thermoleovorans IHI-91. Biotechnology and Bioengineering, 70(6), 630–637. doi:10.1002/1097-0290(20001220) 70:6<630::AID-BIT4>3.0.CO;2-Q.CrossRefGoogle Scholar
  8. Benjamin, S., & Pandey, S. (1997). Enhancement of lipase production during repeated batch culture using immobilized Candida rugosa. Process Biochemistry, 32(5), 437–440. doi:10.1016/S0032-9592(96)00102-1.CrossRefGoogle Scholar
  9. Benjamin, S., & Pandey, A. (2001). Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid-state fermentation. Brazilian Archives of Biology and Technology, 44(2), 213–221. doi:10.1590/S1516-89132001000200016.CrossRefGoogle Scholar
  10. Boareto, A. J. M., Souza, M. B., Valero, F., & Valdman, B. (2007). A hybrid neural model (HNM) for the on-line monitoring of lipase production by Candida rugosa. Journal of Chemical Technology and Biotechnology, 82, 319–327. doi:10.1002/jctb.1678.CrossRefGoogle Scholar
  11. Bornscheuer, U. T., Bessler, C., Srinivas, R., & Krishna, S. H. (2002). Optimizing lipases and related enzymes for efficient application. Trends in Biotechnology, 20, 433–437. doi:10.1016/S0167-7799(02)02046-2.CrossRefGoogle Scholar
  12. Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology, 91, 77–84. doi:10.1016/S0960-8524(03)00152-4.CrossRefGoogle Scholar
  13. Burkert, J. F. M., Maldonado, R. R., Maugeri, F., & Rodrigues, M. I. (2005). Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. Journal of Chemical Technology and Biotechnology, 80, 61–67. doi:10.1002/jctb.1157.CrossRefGoogle Scholar
  14. Carvalho, N. B., Souza, R. L., Castro, H. F., Zanin, G. M., Lima, A. S., & Soares, C. M. L. (2008). Sequential production of amylolytic and lipolytic enzymes by bacterium strain isolated from petroleum contaminated soil. Applied Biochemistry and Biotechnology, 150, 25–32. doi:10.1007/s12010-008-8194-3.CrossRefGoogle Scholar
  15. Cavalcanti, E. A. C., Gutarra, M. L. E., Freire, D. M. G., Castilho, L. R., & Sant’Anna, G. L,. Jr. (2005). Lipase production by solid-state fermentation in fixed-bed bioreactors. Brazilian Archives of Biology and Technology, 48, 79–84.Google Scholar
  16. Ciafardini, G., Zullo, B. A., & Iride, A. (2006). Lipase production by yeasts from extra virgin olive oil. Food Microbiology, 23, 60–67. doi:10.1016/j.fm.2005.01.009.CrossRefGoogle Scholar
  17. Cihangir, N., & Sarikaya, E. (2004). Investigation of lipase production by a new isolated of Aspergillus sp. World Journal of Microbiology & Biotechnology, 20, 193–197. doi:10.1023/B:WIBI.0000021781.61031.3a.CrossRefGoogle Scholar
  18. Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World Journal of Microbiology & Biotechnology, 22, 881–885. doi:10.1007/s11274-005-9118-9.CrossRefGoogle Scholar
  19. Cos, O., Resina, D., Ferrer, P., Montesinos, J. L., & Valero, F. (2005). Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochemical Engineering Journal, 26, 86–94. doi:10.1016/j.bej.2005.04.005.CrossRefGoogle Scholar
  20. D’Annibale, A., Brozzoli, V., Crognale, S., Gallo, A. M., Fredirici, F., & Petruccioli, M. (2006a). Optimisation by response surface methodology of fungal lipase production on olive mill wastewater. Journal of Chemical Technology and Biotechnology, 81, 1586–1593. doi:10.1002/jctb.1554.CrossRefGoogle Scholar
  21. D’Annibale, A., Sermanni, G. G., Federici, F., & Petruccioli, M. (2006b). Olive-oil wastewaters: A promising substrate for microbial lipase production. Bioresource Technology, 97, 1828–1833. doi:10.1016/j.biortech.2005.09.001.CrossRefGoogle Scholar
  22. Diaz, J. C., Rodriguez, J. A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., et al. (2006). Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme and Microbial Technology, 39, 1042–1050. doi:10.1016/j.enzmictec.2006.02.005.CrossRefGoogle Scholar
  23. Dominguez, A., Costas, M., Longo, M. A., & Sanroman, A. (2003). A novel application of solid state culture: Production of lipases by Yarrowia lipolytica. Biotechnological Letters, 25, 1225–1229. doi:10.1023/A:1025068205961.CrossRefGoogle Scholar
  24. Dutra, J. C. V., Terzi, S. C., Bevilaqua, J. V., Damaso, M. C. T., Couri, S., Langone, M. A. P., et al. (2008). Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Applied Biochemistry and Biotechnology, 147, 63–75. doi:10.1007/s12010-007-8068-0.CrossRefGoogle Scholar
  25. Elitol, M., & Ozer, D. (2000). Lipase production by immobilized Rhizopus arrhizus. Process Biochemistry, 36, 219–223. doi:10.1016/S0032-9592(00)00191-6.CrossRefGoogle Scholar
  26. Ellaiah, P., Prabhakar, T., Ramakrishna, B., Taleb, A. T., & Adinarayana, K. (2004). Production of lipase by immobilized cells of Aspergillus niger. Process Biochemistry, 39, 525–528. doi:10.1016/S0032-9592(01)00340-5.CrossRefGoogle Scholar
  27. Ertugrul, S., Donmez, G., & Takaç, S. (2007). Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials, 149, 720–724. doi:10.1016/j.jhazmat.2007.04.034.CrossRefGoogle Scholar
  28. Falony, G., Armas, J. C., Mendoza, J. C. D., & Hernandez, J. L. M. (2006). Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technology and Biotechnology, 44(2), 235–240.Google Scholar
  29. Fernandes, M. L. M., Saad, E. B., Meira, J. A., Ramos, L. P., Mitchell, D. A., & Krieger, N. (2007). Esterification and transesterification reactions catalyzed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis. B, Enzymatic, 44, 8–13. doi:10.1016/j.molcatb.2006.08.004.CrossRefGoogle Scholar
  30. Fickers, P., Ongena, M., Destain, J., Weekers, F., & Thonart, P. (2006). Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica. Enzyme and Microbial Technology, 38, 756–759. doi:10.1016/j.enzmictec.2005.08.005.CrossRefGoogle Scholar
  31. Franken, L.P.G., Marcon, N.S., Treichel, H., Oliveira, D., Freire, D.M.G., Dariva, C. et al. (2009). Effect of treatment with compressed propane on lipases hydrolytic activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0087-5.
  32. Ghadge, R. S., Ekambara, K., & Joshi, J. B. (2005). Role of hydrodynamic flow parameters in lipase deactivation in bubble column reactor. Chemical Engineering Science, 60, 6320–6335. doi:10.1016/j.ces.2005.04.045.CrossRefGoogle Scholar
  33. Gordillo, M. A., Montesinos, J. L., Casas, C., Valero, F., Lafuente, J., & Sola, C. (1998a). Improving lipase production from Candida rugosa by a biochemical engineering approach. Chemistry and Physics of Lipids, 93, 131–142. doi:10.1016/S0009-3084(98) 00037-1.CrossRefGoogle Scholar
  34. Gordillo, M. A., Sanz, A., Sanchez, A., Valero, F., Montesinos, J. L., Lafuente, J., et al. (1998b). Enhancement of Candida rugosa lipase production by using different control fed-batch operacional strategies. Biotechnology and Bioengineering, 60(2), 156–168. doi:10.1002/(SICI)1097-0290(19981020)60:2<156::AID-BIT3>3.0.CO;2-M.CrossRefGoogle Scholar
  35. Grbavcic, S. Z., Dimitrijevic-Brankovic, S. I., Bezbradica, D. I., Siler-Marinkovic, S. S., & Knezevic, Z. D. (2007). Effect of fermentation conditions on lipase production by Candida utilis. Journal of the Serbian Chemical Society, 72(8–9), 757–765. doi:10.2298/JSC0709757G.CrossRefGoogle Scholar
  36. Griebeler, N., Polloni, A.E., Remonatto, D., Arbter, F., Vardanega, R., Cechet, J.L. et al. (2009). Isolation and screening of lipase-producing fungi with hydrolytic activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0176-5.
  37. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781. doi:10.1007/s00253-004-1568-8.CrossRefGoogle Scholar
  38. Gupta, N., Shai, V., & Gupta, R. (2007). Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor. Process Biochemistry, 42(2), 518–526. doi:10.1016/j.procbio.2006.10.006.CrossRefGoogle Scholar
  39. Haaland, P. D. (1989). Experimental design in biotechnology. New York, USA: Marcel Dekker.Google Scholar
  40. Haider, M. A., Pakshirajan, K., Singh, A., & Chaudhry, S. (2008). Artificial neural network-genetic algorithm approach to optimize media constituents for enhancing lipase production by a soil microorganism. Applied Biochemistry and Biotechnology, 144, 225–235. doi:10.1007/s12010-007-8017-y.CrossRefGoogle Scholar
  41. He, Y. Q., & Tan, T. W. (2006). Use of response surface methodology to optimize culture medium for lipase for production of lipase with Candida sp. 99-125. Journal of Molecular Catalysis. B, Enzymatic, 43, 9–14. doi:10.1016/j.molcatb.2006.02.018.CrossRefGoogle Scholar
  42. Ikeda, S., Nikaido, K., Araki, K., Yoshitake, A., Kumagai, H., & Isoai, A. (2004). Production of recombinant human lysosomal acid lipase in Schizosaccharomyces pombe: Development of a fed-batch fermentation and purification process. Journal of Bioscience and Bioengineering, 98(5), 366–373.Google Scholar
  43. Immanuel, G., Esakkiraj, P., Jebadhas, A., Iyapparaj, P., & Palavesam, A. (2008). Investigation of lipase production by milk isolate Serratia rudidaea. Food Technology and Biotechnology, 46(1), 60–65.Google Scholar
  44. Ito, T., Kikuta, H., Nagomori, E., Honda, H., Ogino, H., Ishikawa, H., et al. (2001). Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. Journal of Bioscience and Bioengineering, 91(3), 245–250. doi:10.1263/jbb.91.245.CrossRefGoogle Scholar
  45. Jensen, B., Nebelong, P., Olsen, J., & Reeslev, M. (2002). Enzyme production in continuous cultivation by the thermophilic fungus Thermomyces lanuginosus. Biotechnological Letters, 24, 41–45. doi:10.1023/A:1013805232462.CrossRefGoogle Scholar
  46. Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. Biotechnology Advances, 26, 457–470. doi:10.1016/j.biotechadv.2008.05.003.CrossRefGoogle Scholar
  47. Kar, T., Delvigne, F., Masson, M., Destain, J., & Thonart, P. (2008). Investigation of the effect of different extracellular factors on the lipase production by Yarrowia lipolityca on the basis of a scale-down approach. Journal of Industrial Microbiology & Biotechnology, 35, 1053–1059. doi:10.1007/s10295-008-0382-1.CrossRefGoogle Scholar
  48. Kaushik, R., Saran, S., Isar, J., & Saxena, R. K. (2006). Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. Journal of Molecular Catalysis. B, Enzymatic, 40, 121–126. doi:10.1016/j.molcatb.2006.02.019.CrossRefGoogle Scholar
  49. Kempka, A. P., Lipke, N. R., Pinheiro, T. L. F., Menoncin, S., Treichel, H., Freire, D. M. G., et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering, 31, 119–125. doi:10.1007/s00449-007-0154-8.CrossRefGoogle Scholar
  50. Khuri, A. I., & Cornell, J. A. (1987). Response surface-design and analysis. New York, USA: ASQC, Marcel Dekker.Google Scholar
  51. Kim, B. S., & Hou, C. T. (2006). Production of lipase by high cell density fed-batch culture of Candida cylindracea. Bioprocess and Biosystems Engineering, 29, 59–64. doi:10.1007/s00449-006-0058-z.CrossRefGoogle Scholar
  52. Kiran, G. S., Shanmughapriya, S., Jayalakshmi, J., Selvin, J., Gandhimathi, R., Sivaramakrishnan, S., et al. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystems Engineering, 31, 483–492. doi:10.1007/s00449-007-0186-0.CrossRefGoogle Scholar
  53. Kumar, S. S., & Gupta, R. (2008). An extracellular lipase from Trichosporon asahii MSR 54: Medium optimization and enantioselective deacetylation of phenyl ethyl acetate. Process Biochemistry, 43, 1054–1060. doi:10.1016/j.procbio.2008.05.017.CrossRefGoogle Scholar
  54. Li, C. Y., Chen, S. J., Cheng, C. Y., & Chen, T. L. (2005). Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochemical Engineering Journal, 25, 195–199. doi:10.1016/j.bej.2005.05.002.CrossRefGoogle Scholar
  55. Lin, E. S., Wang, C. C., & Sung, S. C. (2006). Cultivating conditions influence lipase production by the edible basidiomycete Antrodia cinnamomea in submerged culture. Enzyme and Microbial Technology, 39, 98–102. doi:10.1016/j.enzmictec.2005.10.002.CrossRefGoogle Scholar
  56. Liu, Z., Chi, Z., Wang, L., & Li, J. (2008). Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochemical Engineering Journal, 40, 445–451. doi:10.1016/j.bej.2008.01.014.CrossRefGoogle Scholar
  57. Lopes, M., Gomes, N., Mota, M., & Belo, I. (2009). Yarrowia lipolytica growth under increased air pressure: Influence on enzyme production. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8359-0.
  58. Mahanta, N., Gupta, A., & Khare, S. K. (2008). Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology, 99, 1729–1735. doi:10.1016/j.biortech.2007.03.046.CrossRefGoogle Scholar
  59. Mala, J. G. S., Edwinoliver, N. G., Kamini, N. R., & Puvanakrishnan, R. (2007). Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. Journal of General and Applied Microbiology, 53, 247–253. doi:10.2323/jgam.53.247.CrossRefGoogle Scholar
  60. Martinez-Ruiz, A., Garcia, H. S., Saucedo-Castaneda, G., & Favela-Torres, E. (2008). Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Applied Biochemistry and Biotechnology, 151, 393–401. doi:10.1007/s12010-008-8207-2.CrossRefGoogle Scholar
  61. Menoncin, S., Domingues, N. M., Freire, D. M. G., Toniazzo, G., Cansian, R. L., Oliveira, J. V. et al. (2008). Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food and Bioprocess Technology. doi:10.1007/s11947-008-0104-8.
  62. Montesinos, J. L., Gordillo, M. A., Valero, F., Lafuente, J., Sola, C., & Valdman, B. (1997). Improvement of lipase productivity in bioprocess using a structured mathematical model. Journal of Biotechnology, 52, 207–218. doi:10.1016/S0168-1656(96) 01646-X.CrossRefGoogle Scholar
  63. Montesinos, J. L., Dalmau, E., & Casas, C. (2003). Lipase production in continuous culture of Candida rugosa. Journal of Chemical Technology and Biotechnology, 78, 753–761. doi:10.1002/jctb.859.CrossRefGoogle Scholar
  64. Nawani, N., & Kaur, J. (2007). Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: Production, purification and biochemical characterization. Enzyme and Microbial Technology, 40, 881–887. doi:10.1016/j.enzmictec.2006.07.006.CrossRefGoogle Scholar
  65. Palma, M. B., Pinto, A. L., Gombert, A. K., Seitz, K. H., Kivatinitz, S. C., Castilho, L. R., et al. (2000). Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Applied Biochemistry and Biotechnology, 84–86, 1137–1145. doi:10.1385/ABAB:84-86:1-9:1137.CrossRefGoogle Scholar
  66. Park, H., Lee, K., Chi, Y., & Jeong, S. (2005). Effects of methanol on the catalytic properties of porcine pancreatic lipase. Journal of Microbiology and Biotechnology, 15(2), 296–301.Google Scholar
  67. Pinheiro, T. L. F., Menoncin, S., Domingues, N., Oliveira, D., Treichel, H., Di Luccio, M., et al. (2008). Production and partial characterization of lipase from Penicillium verrucosum obtained by submerged fermentation of conventional and industrial media. Ciência e Tecnologia de Alimentos, 28(2), 444–450.CrossRefGoogle Scholar
  68. Potumarthi, R., Subhakar, C., Vanajakshi, J., & Jetty, A. (2008). Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole carbon source. Applied Biochemistry and Biotechnology, 151, 700–710. doi:10.1007/s12010-008-8293-1.CrossRefGoogle Scholar
  69. Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2006). Optimization of lipase production in a triple impeller bioreactor. Biochemical Engineering Journal, 27, 287–294. doi:10.1016/j.bej.2005.08.016.CrossRefGoogle Scholar
  70. Rajendran, A., Palanisamy, A., & Thangavelu, V. (2008). Evaluation of medium components by Plackett–Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chinese Journal of Biotechnology, 24(3), 436–444. doi:10.1016/S1872-2075(08) 60024-2.CrossRefGoogle Scholar
  71. Rodrigues, M. I., & Iemma, A. F. (2005). Planejamento de Experimentos e Otimização de Processos: Uma estratégia seqüencial de planejamentos. Campinas, BRA: Casa do Pão.Google Scholar
  72. Ruchi, G., Anshu, G., & Khare, S. K. (2008). Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresource Technology, 99, 4796–4802. doi:10.1016/j.biortech.2007.09.053.CrossRefGoogle Scholar
  73. Shariff, F. M., Leow, T. C., Mukred, A. D., Salleh, A. B., Basri, M., & Rahman, R. N. Z. R. A. (2007). Production of L2 lipase by Bacillus sp. strain L2: Nutritional and physical factors. Journal of Microbiology and Biotechnology, 47, 406–412. doi:10.1002/jobm.200610275.Google Scholar
  74. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662. doi:10.1016/S0734-9750(01) 00086-6.CrossRefGoogle Scholar
  75. Sun, S. Y., & Xu, Y. (2008). Solid-state for ‘whole-cell synthetic lipase’ production from Rhizopus chinesis and identification of the functional enzyme. Process Biochemistry, 43, 219–224. doi:10.1016/j.procbio.2007.11.010.CrossRefGoogle Scholar
  76. Surribas, A., Stahn, R., Montesinos, J. L., Enfors, S. O., Valero, F., & Jahic, M. (2007). Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. Journal of Biotechnology, 130, 291–299. doi:10.1016/j.jbiotec.2007.04.009.CrossRefGoogle Scholar
  77. Takaç, S., & Marul, B. (2008). Effects of lipidic carbon sources on the extracelular lipolytic activity of a newly isolated strain of Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 35, 1019–1025. doi:10.1007/s10295-008-0377-y.CrossRefGoogle Scholar
  78. Tan, T., & Yin, C. (2005). The mechanism and kinetic model for glycerolysis by 1, 3 position specific lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 25, 39–45. doi:10.1016/j.bej.2005.03.009.CrossRefGoogle Scholar
  79. Tan, T. W., Zhang, M., Wang, B. W., Ying, C. H., & Deng, L. (2003). Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochemistry, 39, 459–465. doi:10.1016/S0032-9592(03)00091-8.CrossRefGoogle Scholar
  80. Teng, Y., & Xu, Y. (2008). Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresource Technology, 99, 3900–3907. doi:10.1016/j.biortech.2007.07.057.CrossRefGoogle Scholar
  81. Teng, Y., Xu, Y., & Wang, D. (2009). Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-008-0259-8.
  82. Vakhlu, J., & Kour, A. (2006). Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9, 1–17. doi:10.2225/vol9-issue1-fulltext-4.CrossRefGoogle Scholar
  83. Vargas, G. D. L. P., Treichel, H., Oliveira, D., Beneti, S. C., Freire, D. M. G., & Di Luccio, M. (2008). Optimization of lipase production by Penicillium simplicissimum in soybean meal. Journal of Chemical Technology and Biotechnology, 83, 47–54. doi:10.1002/jctb.1776.CrossRefGoogle Scholar
  84. Volpato, G., Rodrigues, R. C., Heck, J. X., & Ayub, M. A. Z. (2008). Production of organic solvent tolerant lipase by Staphylococcus caseolyticus EX17 using raw glycerol as substrate. Journal of Chemical Technology and Biotechnology, 83, 821–828. doi:10.1002/jctb.1875.CrossRefGoogle Scholar
  85. Wang, L., Chi, Z. M., Wang, X. H., Liu, Z. Q., & Li, J. (2007). Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Annals of Microbiology, 4, 2–7.Google Scholar
  86. Wang, D., Xu, Y., & Shan, T. (2008). Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochemical Engineering Journal, 41, 30–37. doi:10.1016/j.bej.2008.03.003.CrossRefGoogle Scholar
  87. Wolski, E., Menusi, E., Mazutti, M., Toniazzo, G., Rigo, E., Cansian, R. L., et al. (2008). Response surface methodology for optimization of lipase production by an newly isolated Penicillium sp. Industrial & Engineering Chemistry Research, 47, 9651–9657. doi:10.1021/ie800658j.CrossRefGoogle Scholar
  88. Yan, J. Y., & Yan, Y. I. (2008). Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Applied Microbiology and Biotechnology, 78, 431–439. doi:10.1007/s00253-007-1331-z.CrossRefGoogle Scholar
  89. Yang, X., Wang, B., Cui, F., & Tan, T. (2005). Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus. Process Biochemistry, 40, 2095–2103. doi:10.1016/j.procbio.2004.07.015.CrossRefGoogle Scholar
  90. Zhao, W., Wang, J., Deng, R., & Wang, X. (2008). Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. Journal of Industrial Microbiology & Biotechnology, 35, 189–195. doi:10.1007/s10295-007-0283-8.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Helen Treichel
    • 1
  • Débora de Oliveira
    • 1
  • Marcio A. Mazutti
    • 2
  • Marco Di Luccio
    • 1
  • J. Vladimir Oliveira
    • 1
  1. 1.Department of Food EngineeringURI—Campus de ErechimErechimBrazil
  2. 2.Faculty of Food Engineering, Department of Food EngineeringUNICAMPCampinasBrazil

Personalised recommendations