Emerging Bacterial Pathogens in Meat and Poultry: An Overview

Review Paper

Abstract

Many foodborne diseases are associated with consumption of meat and poultry. Some pathogens were not previously known (new pathogens), others have newly arisen as foodborne (emerging pathogens), and others have become more potent or associated with other products (evolving pathogens). Many of these pathogens may cause severe illness, besides gastroenteritis. Campylobacter jejuni is a leading cause of food-associated bacterial illness; Campylobacter jejuni O:19 and other serotypes are common etiological agents of Guillain–Barré syndrome, a neuropathy due to autoimmune response. Salmonella Typhimurium DT104 and other serotypes have been found to be multi-drug resistant; salmonellosis may lead to chronic reactive arthritis. Many outbreaks of enterohemorrhagic Escherichia coli have been associated with consumption of undercooked contaminated ground beef; complication may occur (e.g., hemolytic uremic syndrome and thrombotic thrombocytopenic purpura). Listeria monocytogenes is ubiquitous; listeriosis is of major public health concern because of the severity and non-enteric nature of the disease (meningitis or meningoencephalitis, septicemia, and abortion) and its ability to multiply at refrigeration temperature. Arcobacter butzleri is a potential foodborne pathogen, and has been isolated from raw poultry, meat, and meat products; but its role in causing human illness is not fully understood. Mycobacterium avium subsp. paratuberculosis can be transmitted by ingestion of raw and processed meats; the organism may contribute to Crohn’s disease, a chronic intestinal enteritis. Beef, pork, lamb, and/or poultry have been reported as sources of infection for the abovementioned organisms but have not been generally associated with disease outbreaks of some of the pathogens.

Keywords

New, emerging and evolving foodborne pathogens Pathogenic bacteria Meat Poultry Food safety Food policy 

References

  1. Acheson, D. W. K. (2003). Emerging foodborne enteric pathogens. In B. Caballero, L. C. Trugo, & P. M. Finglas (Eds.), Encyclopedia of food sciences and nutrition (2nd edition) (pp. 2062–2069). London: Academic.Google Scholar
  2. Altekruse, S. F., Cohen, M. L., & Swerdlow, D. L. (1997). Emerging foodborne diseases. Emerging Infectious Diseases, 3(3), 285–293.CrossRefGoogle Scholar
  3. Andersson, D. I. (2003). Persistence of antibiotic resistant bacteria. Current Opinion in Microbiology, 6(5), 452–456. doi:10.1016/j.mib.2003.09.001.CrossRefGoogle Scholar
  4. Anon. (2004). New E. coli research offers safer meat processing. Available at: http://www.foodproductiondaily.com/news/news-ng.asp?n = 53813-new-e-coli. Accessed 21 February 2008.
  5. Avila-Sosa, R., Gastélum-Franco, M. G., Camacho-Davila, A., Torres-Muñoz, J. V., & Nevarez-Moorillón, G. V. (2008). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0085-7.
  6. Braun, P., Hoffmann, B., & Fehlhaber, K. (2004). Impact of slaughtering, dissecting and processing on the microbial quality of turkey meat. In J. M. Smulders, & J. D. Collins (Eds.), Safety assurance during food processing (pp. 354–357). Wageningen: Wageningen Academic.Google Scholar
  7. Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36(3), 162–167. doi:10.1046/j.1472-765X.2003.01285.x.CrossRefGoogle Scholar
  8. Carlson, S. A. (2004). Salmonella strain DT104: Multiple new abilities to cause disease and the relationship to multiple antibiotic resistances. Feedinfo News Service. Available at: http://www.feedinfo.com. Accessed 11 August 2004.
  9. Ceelen, L. M., Haesebrouck, F., Favoreel, H., Ducatelle, R., & Decostere, A. (2006). The cytolethal distending toxin among Helicobacter pullorum strains from human and poultry origin. Veterinary Microbiology, 113(1–2), 45–53. doi:10.1016/j.vetmic.2005.10.020.CrossRefGoogle Scholar
  10. Chan, K. F., Le Tran, H., Kanenaka, R. Y., & Kathariou, S. (2001). Survival of clinical and poultry-derived isolates of Campylobacter jejuni at a low temperature (4°C). Applied and Environmental Microbiology, 67(9), 4186–4191. doi:10.1128/AEM.67.9.4186-4191.2001.CrossRefGoogle Scholar
  11. Cheftel, J. C., & Culioli, J. (1997). Effects of high pressure on meat: a review. Meat Science, 46(3), 211–236. doi:10.1016/S0309-1740(97)00017-X.CrossRefGoogle Scholar
  12. Clark, A. G., & Bueschkens, D. H. (1988). Horizontal spread of human and poultry-derived strains of Campylobacter jejuni among chicks held in incubators and shipping boxes. Journal of Food Protection, 51(6), 438–441.Google Scholar
  13. Cutter, C. N., & Rivera-Betancourt, M. (2000). Interventions for the reduction of Salmonella Typhimurium DT 104 and non-O157:H7 enterohemorrhagic Escherichia coli on beef surfaces. Journal of Food Protection, 63(10), 1326–1332.Google Scholar
  14. D’Aoust, J. Y., & Maurer, J. (2007). Salmonella species. In M. P. Doyle, & L. R. Beuchat (Eds.), Food microbiology. Fundamentals and frontiers (3rd edition) (pp. 187–236). Washington, DC: ASM.Google Scholar
  15. EC [European Commission]. (2005). Commission regulation No. 2073/2005, of 15 November 2005, on Microbiological criteria for foodstuffs, pp L338/1–26.Google Scholar
  16. Echeita, M. A., Aladueña, A., Cruchaga, S., & Usera, M. A. (1999). Emergence and spread of an atypical Salmonella enterica subsp. enterica serotype 4,5,12:i:-strain in Spain. Journal of Clinical Microbiology, 37(10), 3425.Google Scholar
  17. EFSA. (2005a). Scientific opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the European Commission on Treatment of poultry carcasses with chlorine dioxide, acidified sodium chloride, trisodium phosphate and peroxyacids. EFSA Journal, 297, 1–27.Google Scholar
  18. EFSA. (2005b). Scientific opinion of the Panel on Biological Hazards on a request from the European Commission on the Evaluation of the efficacy of peroxyacids on poultry carcasses. EFSA Journal, 306, 1–10.Google Scholar
  19. EFSA. (2008). Scientific opinion of the Panel on Biological Hazards on a request from the European Commission on A quantitative microbiological risk assessment on Salmonella in meat: source attribution for human salmonellosis from meat. EFSA Journal, 625, 1–32.Google Scholar
  20. Ellerbroek, L. I. (2004). Research update on major pathogens associated with the processing of poultry and poultry products. In J. M. Smulders, & J. D. Collins (Eds.), Safety assurance during food processing (pp. 81–98). Wageningen: Wageningen Academic.Google Scholar
  21. Flodrops, H., Houdon, L., Gérardin, P., Mesnage, R., Edmar, A., Picot, S., et al. (2005). Méningite lymphocytaire: Listeria monocytogenes, une étiologie à ne pas négliger chez l’enfant immunocompétent. Archives of Pediatrics, 12(11), 1620–1623. doi:10.1016/j.arcped.2005.07.011.CrossRefGoogle Scholar
  22. Frenzen, P. D. (2004). Deaths due to unknown foodborne agents. Emerging Infectious Diseases, 10(9), 1536–1543.Google Scholar
  23. Galindo, C. L., & Chopra, A. K. (2007). Aeromonas and Plesiomonas species. In M. P. Doyle, & L. R. Beuchat (Eds.), Food microbiology. Fundamentals and frontiers (3rd edition) (pp. 381–400). Washington, DC: ASM.Google Scholar
  24. Gilbert, C., & Slavik, M. (2004). Determination of toxicity of Campylobacter jejuni isolated from humans and from poultry carcasses acquired at various stages of production. Journal of Applied Microbiology, 97(2), 347–353. doi:10.1111/j.1365-2672.2004.02302.x.CrossRefGoogle Scholar
  25. Glass, K. A., & Doyle, M. P. (1989). Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Applied and Environmental Microbiology, 55(6), 1565–1569.Google Scholar
  26. Godschalk, P. C. R., Gilbert, M., Jacobs, B. C., Kramers, T., Tio-Gillen, A. P., Ang, C. W., et al. (2006). Co-infection with two different Campylobacter jejuni strains in a patient with the Guillain–Barré syndrome. Microbes and Infection, 8(1), 248–253. doi:10.1016/j.micinf.2005.06.022.CrossRefGoogle Scholar
  27. Guerin, P. J., Nygard, K., Siitonen, A., Vold, L., Kuusi, M., de Jong, B., et al. (2006). Emerging Salmonella Enteritidis anaerogenic phage type14b: outbreak in Norwegian, Swedish and Finnish travellers returning from Greece. Eurosurveillance Monthly Release, 11(2), 61–66.Google Scholar
  28. Gurtler, J. B., Kornacki, J. L., & Beuchat, L. R. (2005). Enterobacter sakazakii: a coliform of increased concern to infant health. International Journal of Food Microbiology, 104(1), 1–34. doi:10.1016/j.ijfoodmicro.2005.02.013.CrossRefGoogle Scholar
  29. Hajjeh, R. A., Relman, D., Cieslak, P. R., Sofair, A. N., Passaro, D., Flood, J., et al. (2002). Surveillance for unexplained deaths and critical illnesses due to possibly infectious causes, United States, 1995–1998. Emerging Infectious Diseases, 8(2), 145–153.CrossRefGoogle Scholar
  30. Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590–3595. doi:10.1021/jf980154m.CrossRefGoogle Scholar
  31. Hermon-Taylor, J. (2001). Mycobacterium avium subspecies paratuberculosis: the nature of the problem. Food Control, 12(6), 331–334. doi:10.1016/S0956-7135(01)00046-9.CrossRefGoogle Scholar
  32. Hilton, C. L., Mackey, B. M., Hargreaves, A. J., & Forsythe, S. J. (2001). The recovery of Arcobacter butzleri NCTC 12481 from various temperature treatments. Journal of Applied Microbiology, 91(5), 929–932. doi:10.1046/j.1365-2672.2001.01457.x.CrossRefGoogle Scholar
  33. Hutchins, A. D. (1996). Assessment of alimentary exposure to Listeria monocytogenes. International Journal of Food Microbiology, 30(1–2), 71–85. doi:10.1016/0168-1605(96)00992-0.CrossRefGoogle Scholar
  34. Inglis, G. D., Kalischuk, L. D., & Busz, H. W. (2004). Chronic shedding of Campylobacter species in beef cattle. Journal of Applied Microbiology, 97(2), 410–420. doi:10.1111/j.1365-2672.2004.02313.x.CrossRefGoogle Scholar
  35. Iversen, C., & Forsythe, S. (2003). Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends in Food Science & Technology, 14(11), 443–454. doi:10.1016/S0924-2244(03)00155-9.CrossRefGoogle Scholar
  36. Jacobs-Reitsma, W. F., Van de Giessen, A. W., Bolder, N. M., & Mulder, R. W. A. W. (1995). Epidemiology of Campylobacter spp. at two Dutch broiler farms. Epidemiology and Infection, 114(3), 413–421.CrossRefGoogle Scholar
  37. Juneja, V. K., & Marmer, B. S. (1999). Lethality of heat to Escherichia coli O157:H7: D- and z-value determinations in turkey, lamb and pork. Food Research International, 32(1), 23–28. doi:10.1016/S0963-9969(99)00060-5.CrossRefGoogle Scholar
  38. Kadhum, H. J., Ball, H. J., Oswald, E., & Rowe, M. T. (2006). Characteristics of cytotoxic necrotizing factor and cytolethal distending toxin producing Escherichia coli strains isolated from meat samples in Northern Ireland. Food Microbiology, 23(5), 491–497. doi:10.1016/j.fm.2005.07.003.CrossRefGoogle Scholar
  39. Keen, J. E., & Elder, R. O. (2002). Isolation of shiga-toxigenic Escherichia coli O157 from hide surfaces and the oral cavity of finished beef feedlot cattle. Journal of the American Veterinary Medical Association, 220(6), 756–763. doi:10.2460/javma.2002.220.756.CrossRefGoogle Scholar
  40. Kobayashi, K., Hattori, M., Hara-Kudo, Y., Okubo, T., Yamamoto, S., Takita, T., et al. (2004). Glycopeptide derived from hen egg ovomucin has the ability to bind enterohemorrhagic Escherichia coli O157:H7. Journal of Agricultural and Food Chemistry, 52(18), 5740–5746. doi:10.1021/jf0353335.CrossRefGoogle Scholar
  41. Lehner, A., Tasara, T., & Stephan, R. (2005). Relevant aspects of Arcobacter spp. as potential foodborne pathogen. International Journal of Food Microbiology, 102(2), 127–135. doi:10.1016/j.ijfoodmicro.2005.03.003.CrossRefGoogle Scholar
  42. Leon-Velarde, C. G., Cai, H. Y., Larkin, C., Bell-Rogers, P., Stevens, R. W. C., & Odumeru, J. A. (2004). Evaluation of methods for the identification of Salmonella enterica serotype Typhimurium DT104 from poultry environmental samples. Journal of Microbiological Methods, 58(1), 79–86. doi:10.1016/j.mimet.2004.03.005.CrossRefGoogle Scholar
  43. McCann, M. S., Sheridan, J. J., McDowell, D. A., & Blair, I. S. (2006). Effects of steam pasteurisation on Salmonella Typhimurium DT104 and Escherichia coli O157:H7 surface inoculated onto beef, pork and chicken. Journal of Food Engineering, 76(1), 32–40. doi:10.1016/j.jfoodeng.2005.05.024.CrossRefGoogle Scholar
  44. McEvoy, J. M., Sheridan, J. J., & McDowell, D. A. (2004). Major pathogens associated with the processing of beef. In J. M. Smulders, & J. D. Collins (Eds.), Safety assurance during food processing (pp. 57–80). Wageningen: Wageningen Academic.Google Scholar
  45. Mead, G. (2004). Campylobacter update—the challenge. International Poultry Production, 12(4), 26–29.Google Scholar
  46. Meng, J., & Doyle, M. P. (1998). Emerging and evolving microbial foodborne pathogens. Bulletin de l’Institut Pasteur, 96(3), 151–164. doi:10.1016/S0020-2452(98)80010-9.CrossRefGoogle Scholar
  47. Meng, J., Doyle, M. P., Zhao, T., & Zhao, S. (2007). Enterohemorrhagic Escherichia coli. In M. P. Doyle, & L. R. Beuchat (Eds.), Food microbiology. Fundamentals and frontiers (3rd edition) (pp. 249–269). Washington, DC: ASM.Google Scholar
  48. Moreno, Y., Alonso, J. L., Botella, S., Ferrús, M. A., & Hernández, J. (2004). Survival and injury of Arcobacter after artificial inoculation into drinking water. Research in Microbiology, 155(9), 726–730. doi:10.1016/j.resmic.2004.05.011.CrossRefGoogle Scholar
  49. Mor-Mur, M., & Yuste, J. (2003). High pressure processing applied to cooked sausage manufacture: physical properties and sensory analysis. Meat Science, 65(3), 1187–1191. doi:10.1016/S0309-1740(03)00013-5.CrossRefGoogle Scholar
  50. Naser, S. A., Ghobrial, G., Romero, C., & Valentine, J. F. (2004). Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet, 364(9439), 1039–1044. doi:10.1016/S0140-6736(04)17058-X.CrossRefGoogle Scholar
  51. Niemira, B. A. (2008). Irradiation sensitivity of planktonic and biofilm-associated Listeria monocytogenes and L. innocua as influenced by temperature of biofilm formation. Food and Bioprocess Technology. doi:10.1007/s11947-008-0079-5.
  52. Olah, P. A., Doetkott, C., Fakhr, M. K., & Logue, C. M. (2006). Prevalence of the Campylobacter multi-drug efflux pump (CmeABC) in Campylobacter spp. isolated from freshly processed turkeys. Food Microbiology, 23(5), 453–460. doi:10.1016/j.fm.2005.06.004.CrossRefGoogle Scholar
  53. Ouattara, O., Giroux, M., Smoragiewicz, W., Saucier, L., & Lacroix, M. (2002). Combined effect of gamma irradiation, ascorbic acid, and edible coating on the improvement of microbial and biochemical characteristics of ground beef. Journal of Food Protection, 65(6), 981–987.Google Scholar
  54. Oussalah, M., Caillet, S., Salmieäri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52(18), 5598–5605. doi:10.1021/jf049389q.CrossRefGoogle Scholar
  55. Pearson, A. D., Greenwood, M., Healing, T. D., Rollins, D., Shahamat, M., Donaldson, J., & Colwell, R. R. (1993). Colonization of broiler chickens by waterborne Campylobacter jejuni. Applied and Environmental Microbiology, 59(4), 987–996.Google Scholar
  56. Ray, B., & Bhunia, A. (Eds.) (2008). Foodborne infections. In: Fundamental food microbiology (4th edition) (pp. 283–313). Boca Raton: CRC.Google Scholar
  57. Rivas, L., Fegan, N., & Vanderlinde, P. (2004). Isolation and characterisation of Arcobacter butzleri from meat. International Journal of Food Microbiology, 91(1), 31–41. doi:10.1016/S0168-1605(03)00328-3.CrossRefGoogle Scholar
  58. Ross, A. I. V., Griffiths, M. W., Mittal, G. S., & Deeth, H. C. (2003). Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology, 89(2–3), 125–138. doi:10.1016/S0168-1605(03)00161-2.CrossRefGoogle Scholar
  59. Rugbjerg, H., Wingstrand, A., Hald, T., Strodl Andersen, J., Lo Fo Wong, D. M. A., & Korsgaard, H. (2004). Estimating the number of undetected multi-resistant Salmonella Typhimurium DT104 infected pig herds in Denmark. Preventive Veterinary Medicine, 65(3–4), 147–171. doi:10.1016/j.prevetmed.2004.07.001.CrossRefGoogle Scholar
  60. Sahin, O., Zhang, Q., Meitzler, J. C., Harr, B. S., Morishita, T. Y., & Mohan, R. (2001). Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Applied and Environmental Microbiology, 67(9), 3951–3957. doi:10.1128/AEM.67.9.3951-3957.2001.CrossRefGoogle Scholar
  61. Samelis, J., Sofos, J. N., Kendall, P. A., & Smith, G. C. (2001). Fate of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes in fresh meat decontamination fluids at 4 and 10°C. Journal of Food Protection, 64(7), 950–957.Google Scholar
  62. Satin, M. (2002). Use of irradiation for microbial decontamination of meat: situation and perspectives. Meat Science, 62(3), 277–283. doi:10.1016/S0309-1740(02)00129-8.CrossRefGoogle Scholar
  63. Snijders, J. M. A., & Collins, J. D. (2004). Research update on major pathogens associated with the processing of pork and pork products. In J. M. Smulders, & J. D. Collins (Eds.), Safety assurance during food processing (pp. 99–113). Wageningen: Wageningen Academic.Google Scholar
  64. Sofos, J. N. (2008). Challenges to meat safety in the 21st century. Meat Science, 78(1–2), 3–13. doi:10.1016/j.meatsci.2007.07.027.CrossRefGoogle Scholar
  65. Swaminathan, B., Cabanes, D., Zhang, W., & Cossart, P. (2007). Listeria monocytogenes. In M. P. Doyle, & L. R. Beuchat (Eds.), Food microbiology. Fundamentals and frontiers (3rd edition) (pp. 457–491). Washington, DC: ASM.Google Scholar
  66. Todd, E. C. D. (2003). Microbiological safety standards and public health goals to reduce foodborne disease. Meat Science, 66(1), 33–43. doi:10.1016/S0309-1740(03)00023-8.CrossRefGoogle Scholar
  67. Tollefson, L., Angulo, F. J., & Fedorka-Cray, P. J. (1998). National surveillance for antibiotic resistance in zoonotic enteric pathogens. Veterinary Clinics of North America: Food Animal Practice, 14(1), 141–150.Google Scholar
  68. Ursinitsch, B., Pless, P., & Köfer, J. (2004). Prevalence and resistance of Campylobacter spp. in Styrian poultry meat. In J. M. Smulders, & J. D. Collins (Eds.), Safety assurance during food processing (pp. 380–382). Wageningen: Wageningen Academic.Google Scholar
  69. Usera, M. A., Aladueña, A., González, R., De La Fuente, M., García-Peña, J., Frías, N., et al. (2002). Antibiotic resistance of Salmonella spp. from animal sources in Spain in 1996 and 2000. Journal of Food Protection, 65(5), 768–773.Google Scholar
  70. Van Schothorst, M. (1998). Principles for the establishment of microbiological food safety objectives and related control measures. Food Control, 9(6), 379–384. doi:10.1016/S0956-7135(98)00129-7.CrossRefGoogle Scholar
  71. Villarruel-López, A., Márquez-González, M., Garay-Martínez, L. E., Zepeda, H., Castillo, A., Mota de la Garza, L., et al. (2003). Isolation of Arcobacter spp. from retail meats and cytotoxic effects of isolates against Vero cells. Journal of Food Protection, 66(8), 1374–1378.Google Scholar
  72. Wesley, I. V. (1997). Helicobacter and Arcobacter: potential human foodborne pathogens. Trends in Food Science & Technology, 8(9), 293–299. doi:10.1016/S0924-2244(97)01050-9.CrossRefGoogle Scholar
  73. Yan, S. S., Pendrak, M. L., Foley, S. L., & Powers, J. H. (2005). Campylobacter infection and Guillain–Barré syndrome: public health concerns from a microbial food safety perspective. Clinical and Applied Immunology Reviews, 5(5), 285–305. doi:10.1016/j.cair.2005.08.001.CrossRefGoogle Scholar
  74. Yuste, J., & Fung, D. Y. C. (2002). Inactivation of Listeria monocytogenes Scott A 49594 in apple juice supplemented with cinnamon. Journal of Food Protection, 65(10), 1663–1666.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.CER Planta de Tecnologia dels Aliments (XaRTA, XIT), Departament de Ciència Animal i dels Aliments, Facultat de VeterinàriaUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations